
PolySpace® Products for C 7
Reference



How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

PolySpace® Products for C Reference

© COPYRIGHT 1999–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2009 Online Only New for Version 7.0 (Release 2009a)
September 2009 Online Only New for Version 7.1 (Release 2009b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Contents

Option Descriptions

1
General Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
-prog Session identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
-date Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
-author Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
-verif-version Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
-keep-all-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
-continue-with-red-error (Deprecated) . . . . . . . . . . . . . . . . . 1-5
-continue-with-existing-host . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
-allow-unsupported-linux . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Report Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
-results-dir Results Directory . . . . . . . . . . . . . . . . . . . . . . . . 1-8
-sources "files" or -sources-list-file file_name . . . . . . . . . . . 1-8
-I directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Target/Compiler Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
-target TargetProcessorType . . . . . . . . . . . . . . . . . . . . . . . . 1-11
GENERIC ADVANCED TARGET OPTIONS . . . . . . . . . . . 1-12
-OS-target OperatingSystemTargetForPolySpaceStubs . . . 1-19
-D compiler-flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
-U compiler-flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
-include file_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
-post-preprocessing-command <file_name> or
"command" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21

-post-analysis-command <file_name> or "command" . . . . . 1-22

Compliance with Standards Options . . . . . . . . . . . . . . . . 1-24
-dos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Embedded Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25
Strictness during verification launching . . . . . . . . . . . . . . . 1-26
Permissiveness during verification launching . . . . . . . . . . 1-27
MISRA-C 2004 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30
-dialect [iar|keil] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-32
-sfr-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-33

iii



PolySpace Inner Settings Options . . . . . . . . . . . . . . . . . . . 1-34
-unit-by-unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34
-unit-by-unit-common-source filename . . . . . . . . . . . . . . . . 1-35
MAIN GENERATOR OPTIONS (-main-generator) for
PolySpace Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35

Stubbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-39
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41
Automatic Orange Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48
-machine-architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50
-max-processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50
Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-51

Precision/Scaling Options . . . . . . . . . . . . . . . . . . . . . . . . . . 1-53
-quick (Deprecated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54
-O(0-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54
-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]] . . . . . . . 1-55
-from verification-phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-56
-to verification-phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57
-context-sensitivity "proc1[,proc2[,...]]" . . . . . . . . . . . . . . . . 1-58
-context-sensitivity-auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-58
-path-sensitivity-delta number . . . . . . . . . . . . . . . . . . . . . . . 1-58
-retype-pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-59
-retype-int-pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-60
-k-limiting number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-62
-no-fold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-62
-respect-types-in-globals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-62
-respect-types-in-fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-63
-inline "proc1[,proc2[,...]]" . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-64
-lightweight-thread-model . . . . . . . . . . . . . . . . . . . . . . . . . . 1-65
-less-range-information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-65

Multitasking Options (PolySpace® Server for C/C++
Product Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-67
-entry-points str1[,str2[,...]] . . . . . . . . . . . . . . . . . . . . . . . . . 1-67
-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]" . . . . 1-67
-temporal-exclusions-file file_name . . . . . . . . . . . . . . . . . . . 1-68

Batch Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-70
-server server_name_or_ip[:port_number] . . . . . . . . . . . . . . 1-70
-sources-list-file file_name . . . . . . . . . . . . . . . . . . . . . . . . . . 1-70
-v | -version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-71
-h[elp] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-71

iv Contents



Check Descriptions

2
Colored Source Code for C . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Illegal Pointer Access to Variable or Structure Field:
IDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Array Conversion Must Not Extend Range: COR . . . . . . . . 2-4
Array Index Within Bounds: OBAI . . . . . . . . . . . . . . . . . . . 2-5
Initialized Return Value: IRV . . . . . . . . . . . . . . . . . . . . . . . 2-6
Non-Initialized Variables: NIV/NIVL . . . . . . . . . . . . . . . . . 2-7
Non-Initialized Pointer: NIP . . . . . . . . . . . . . . . . . . . . . . . . 2-8
POW (Deprecated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
User Assertion: ASRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Scalar and Float Underflows: UNFL . . . . . . . . . . . . . . . . . . 2-10
Scalar and Float Overflows: OVFL . . . . . . . . . . . . . . . . . . . 2-11
Float Underflows and Overflows: UOVFL (Deprecated) . . 2-14
Scalar or Float Division by Zero: ZDV . . . . . . . . . . . . . . . . . 2-15
Shift Amount in 0..31 (0..63):SHF . . . . . . . . . . . . . . . . . . . . 2-16
Left Operand of Left Shift is Negative: SHF . . . . . . . . . . . . 2-17
Function Pointer Must Point to a Valid Function: COR . . . 2-17
Wrong Type for Argument: COR . . . . . . . . . . . . . . . . . . . . . 2-19
Wrong Number of Arguments: COR . . . . . . . . . . . . . . . . . . 2-19
Wrong Return Type of a Function Pointer: COR . . . . . . . . 2-20
Wrong Return Type for Arithmetic Functions: COR . . . . . 2-21
Pointer Within Bounds: IDP . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Non Termination of Call or Loop . . . . . . . . . . . . . . . . . . . . . 2-35
Unreachable Code: UNR . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45
Inspection Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47

Approximations Used During Verification

3
Why PolySpace Verification Uses Approximations . . . . 3-2
What is Static Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Exhaustiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Approximations Made by PolySpace Verification . . . . . 3-4
Volatile Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Structures with Volatile Fields . . . . . . . . . . . . . . . . . . . . . . 3-4

v



Absolute Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Pointer Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Shared Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Constant Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Examples

4
Complete Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Simple C Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Apache Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
cxref Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
T31 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Dishwasher1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Satellite Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

vi Contents



1

Option Descriptions

• “General Options” on page 1-2

• “Target/Compiler Options” on page 1-11

• “Compliance with Standards Options” on page 1-24

• “PolySpace Inner Settings Options” on page 1-34

• “Precision/Scaling Options” on page 1-53

• “Multitasking Options (PolySpace® Server for C/C++ Product Only)” on
page 1-67

• “Batch Options” on page 1-70



1 Option Descriptions

General Options

In this section...

“Overview” on page 1-2

“-prog Session identifier” on page 1-2

“-date Date” on page 1-3

“-author Author” on page 1-3

“-verif-version Version” on page 1-3

“-keep-all-files” on page 1-4

“-continue-with-red-error (Deprecated)” on page 1-5

“-continue-with-existing-host” on page 1-5

“-allow-unsupported-linux” on page 1-5

“Report Generation” on page 1-6

“-results-dir Results Directory” on page 1-8

“-sources "files" or -sources-list-file file_name” on page 1-8

“-I directory” on page 1-10

Overview
This section collates all options relating to the identification of the verification,
including the destination directory for the results and sources.

-prog Session identifier
This option specifies the application name, using only the characters which
are valid for Unix file names. This information is labelled in the GUI as the
Session Identifier.

Default:

Shell Script: polyspace

GUI: New_Project

1-2



General Options

Example shell script entry:

polyspace-c -prog myApp ...

-date Date
This option specifies a date stamp for the verification in dd/mm/yyyy format.
This information is labelled in the GUI as the Date. The GUI also allows
alternative default date formats, via the Edit/Preferences window.

Default:

Day of launching the verification

Example shell script entry:

polyspace-c -date "02/01/2002"...

-author Author
This option is used to specify the name of the author of the verification.

Default:

the name of the author is the result of the whoami command

Example shell script entry:

polyspace-c -author "John Tester"

-verif-version Version
Specifies the version identifier of the verification. This option can be used to
identify different verifications. This information is identified in the GUI as
the Version.

Default:

1.0.

1-3



1 Option Descriptions

Example shell script entry:

polyspace-c -verif-version 1.3 ...

-keep-all-files
When this option is set, all intermediate results and associated working files
are retained. Consequently, it is possible to restart PolySpace® verification
from the end of any complete pass (provided the source code remains entirely
unchanged). If this option is not used, you must restart the verification from
scratch.

By default, intermediate results and associated working files are erased when
they are no longer needed by the software.

This option is applicable only to client verifications. Intermediate results are
always removed before results are downloaded from the PolySpace server.

Note To cleanup intermediate files at a later time, you can select
Tools > Clean Results in the Launcher.

This options deletes the preliminary results files from the results directory.

Default:

Disabled.

Example shell script entry:

polyspace-c -keep-all-files

1-4



General Options

-continue-with-red-error (Deprecated)

Note This option is deprecated in R2009a and later releases, and no longer
exists in the user interface. Verification now continues to the next integration
pass even if a red errors is encountered.

This option allows PolySpace verification to continue even if one of these
red errors is encountered. In most cases, this will mean that the dynamic
behavior of the code beyond the point where red errors are identified will be
undefined, unless the red code is actually inaccessible.

-continue-with-existing-host
When this option is set, the verification will continue even if the system is
under specified or its configuration is not as preferred by PolySpace software.
Verified system parameters include the amount of RAM, the amount of swap
space, and the ratio of RAM to swap.

Default:

verification stops when the host configuration is incorrect or the system is
under specified.

Example Shell Script Entry:

polyspace-c -continue-with-existing-host ...

-allow-unsupported-linux
This option specifies that PolySpace verification will be launched on an
unsupported OS Linux® distribution.

PolySpace software supports the Linux distributions listed in “Hardware and
Software Requirements” in the PolySpace Installation Guide.

For all other Linux distributions, you may be able to verify code using the
-allow-unsupported-linux option, but a warning will be displayed in the
log file informing you of possible incorrect behaviors:

1-5



1 Option Descriptions

**************************************************** ***
*** ***
*** WARNING ***
*** ***
*** You are running PolySpace on an ***
*** unsupported Linux distribution. It may lead ***
*** to incorrect behaviour of the product. Please ***
*** note that no support will be available for ***
*** this operating system. ***
*** ***
************************************************** ** ***

Default:

Disabled

Example Shell Script Entry:

polyspace-c allow-unsupported-linux ...

Report Generation
When this option is selected, PolySpace software creates a report for the
verification, using the following options:

• “-report-template Report_Template_Name” on page 1-6

• “-report-output-format Output_Format” on page 1-7

• “-report-output-name Name” on page 1-7

-report-template Report_Template_Name
Generates a report for the verification, using the specified report template
name. The report is generated at the end of the verification process, before
any post-analysis-command is executed.

Default:

C:\PolySpace\PolySpace_Common\ReportGenerator\templates\Developer.rpt

1-6



General Options

Example Shell Script Entry:

polyspace-c -report-template c:/polyspace/my_template

-report-output-format Output_Format
Specifies the output format for the report specified by the report-template
option. The argument is not case sensitive.

Valid options are:

• HTML

• PDF

• RTF

• WORD

• XML

Note WORD format is not available on UNIX platforms, RTF format is used
instead.

Default:

If you do not specify an output format, RTF is used by default.

Example Shell Script Entry:

polyspace-c -report-template my_template report-output-format
pdf

-report-output-name Name
Specifies the name of the report file that is generated for the verification.

Default:

If you do not specify a name, the following name is used by default:

1-7



1 Option Descriptions

-Prog_TemplateName.Format

where Prog is the argument of prog option, TemplateName is the name of the
report template specified by the -report-template option, and Format is the
file extension for the format specified by the report-output-format option.

Example Shell Script Entry:

polyspace-c -report-template my_template report-output-name
Airbag_V3.rtf

-results-dir Results Directory
This option specifies the directory in which PolySpace software will write the
results of the verification. Note that although relative directories may be
specified, particular care should be taken with their use especially where
the tool is to be launched remotely over a network, and/or where a project
configuration file is to be copied using the "Save as" option.

Default:
Shell Script: The directory in which tool is launched.
From Graphical User Interface: C:\PolySpace_Results

Example Shell Script Entry:

polyspace-c -results-dir RESULTS ...
export RESULTS=results_`date +%d%B_%HH%M_%A`
polyspace-c -results-dir `pwd`/$RESULTS ...

-sources "files" or -sources-list-file file_name
Specifies a list of source files to be verified.

The list of source files must be double-quoted and separated by commas.

• -sources "file1[ file2[ ...]]" (Linux and Solaris™)

• -sources "file1[,file2[, ...]]" (Windows®, Linux and Solaris)

• -sources-list-file file_name (not a graphical option)

1-8



General Options

Note UNIX® standard wild cards are available to specify a number of files.

The source files are compiled in the order in which they are specified.

Note If you do not specify any files, the software verifies all files in the
source directory in alphabetical order.

Note The specified files must have valid extensions:
*.(c|C|cc|cpp|CPP|cxx|CXX)

Defaults:

sources/*.(c|C|cc|cpp|CPP|cxx|CXX)

Example Shell Script Entry under linux or solaris (files are separated
with a white space):

polyspace-c -sources "my_directory/*.cpp" ...
polyspace-c -sources "my_directory/file1.cc other_dir/file2.cpp"
...

Example Shell Script Entry under windows (files are separated with a
comma):

polyspace-c -sources "my_directory/file1.cpp,other_dir/file2.cc"
...

Using -sources-list-file, each file name need to be given with an absolute
path. Moreover, the syntax of the file is the following:

• One file by line.

• Each file name is given with its absolute path.

1-9



1 Option Descriptions

Note This option is only available in batch mode

Example Shell Script Entry for -sources-list-file:

polyspace-c -sources-list-file "C:\Analysis\files.txt"
polyspace-c -sources-list-file "/home/poly/files.txt"

-I directory
This option is used to specify the name of a directory to be included when
compiling C sources. Only one directory may be specified for each –I, but the
option can be used multiple times.

Default:

• When no directory is specified using this option, the ./sources directory (if
it exists) is automatically included

• If several include-dir are mentioned, the ./sources directory (if it exists), is
implicitly added at the end of the "-I" list

Example Shell Script Entry-1:

polyspace-c -I /com1/inc -I /com1/sys/inc

is equivalent to

polyspace-c -I /com1/inc -I /com1/sys/inc -I ./sources

Example Shell Script Entry-2:

polyspace-c

is equivalent to

polyspace-c -I ./sources

1-10



Target/Compiler Options

Target/Compiler Options

In this section...

“Overview” on page 1-11

“-target TargetProcessorType” on page 1-11

“GENERIC ADVANCED TARGET OPTIONS” on page 1-12

“-OS-target OperatingSystemTargetForPolySpaceStubs” on page 1-19

“-D compiler-flag” on page 1-19

“-U compiler-flag” on page 1-20

“-include file_name” on page 1-20

“-post-preprocessing-command <file_name> or "command"” on page 1-21

“-post-analysis-command <file_name> or "command"” on page 1-22

Overview
This section allows details of the target processor and operating system to be
specified. Header files should not be entered here; instead, include directories
should be added using the relevant field under the Compile flag options.

-target TargetProcessorType
This option specifies the target processor type, and in doing so informs the
verification of the size of fundamental data types and of the endianess of the
target machine.

Possible values are: sparc, m68k, powerpc, i386, c-167, tms320c3x,
sharc21x61, necv850, mcpu, or generic target.

mcpu is a reconfigurable Micro Controller/Processor Unit target. One or
more generic target can also be specified and saved. Also code which is to be
run on an unlisted processor type can be analyzed using one of the other
processor types listed, if the data properties which are relevant to PolySpace
verification are common. For more information, see “Setting Up Project for
Generic Target Processors” in the PolySpace Products for C User’s Guide.

1-11



1 Option Descriptions

Instructions on the specification of a generic target and on the modification
of the mcpu target are available in “GENERIC ADVANCED TARGET
OPTIONS” on page 1-12.

Default:

sparc

Example shell script entry:

polyspace-c -target m68k ...

GENERIC ADVANCED TARGET OPTIONS
The previous Generic target options dialog box is only available when a mcpu
target is selected. (Enter the target name in PolySpace Launcher)

Allows the specification of a generic "Micro Controller/Processor Unit" or
mcpu target name. Initially, it is necessary to use the GUI to specify the name
of a new mcputarget – say, “MyTarget”.

That new target is added to the -target options list. The new target’s default
characteristics are as follows, using the type [size, alignment] format.

• char [8, 8, char [16,16]]

• short [8,8], short [16, 16]

• int [16, 16]

• long [32, 32], long long [32, 32]

• float [32, 32], double [32, 32], long double [32, 32]

• pointer [16, 16]

• char is signed

• little-endian

When using the command line, MyTarget is specified with all the options
for modification:

1-12



Target/Compiler Options

polyspace-c -target MyTarget

For example, a specific target uses 8 bit alignment (see also -align ), for which
the command line would read:

polyspace-c -target mcpu -align 8

-little-endian
This option is only available when a -mcpu generic target has been chosen.

The endianness defines the byte order within a word (and the word order
within a long integer). Little-endian architectures are Less Significant byte
First (LSF), for example: i386.

For a little endian target, the less significant byte of a short integer (for
example 0x00FF) is stored at the first byte (0xFF) and the most significant
byte (0x00) at the second byte.

Example shell script entry:

polyspace-c -target mcpu -little-endian

-big-endian
This option is only available when a -mcpu generic target has been chosen.

The endianness defines the byte order within a word (and the word order
within a long integer). Big-endian architectures are Most Significant byte
First (MSF), for example: SPARC, m68k.

For a big endian target, the most significant byte of a short integer (for
example 0x00FF) is stored at the first byte (0x00) and the less significant
byte (0xFF) at the second byte.

Example shell script entry:

polyspace-c -target mcpu -big-endian

1-13



1 Option Descriptions

-default-sign-of-char [signed|unsigned]
This option is available for all targets. It allows a char to be defined as
"signed", "unsigned", or left to assume the mcpu target’s default behavior

• default mode – The sign of char is left to assume the target’s default
behavior. By default all targets are considered as signed except for hc08
and powerpc targets.

• signed – Disregards the target’s default char definition, and specifies that
a "signed char" should be used.

• unsigned – Disregards the target’s default char definition, and specifies
that a "unsigned char" should be used.

Example Shell Script Entry

polyspace-c -default-sign-of-char unsigned -target mcpu ...

-char-is-16bits
This option is only available when a -mcpu generic target has been chosen.

The default configuration of a generic target defines a char as 16 bits. This
option changes it to 16 bits, regardless of sign.

the minimum alignment of objects is also set to 16 bits and so, incompatible
with the options -short-is-8bits and -align 8.

Setting the char type to 16 bits has consequences on the following:

• computation of size of for objects

• detection of underflow and overflow on chars

Without the option char for mcpu are 8 bits

Example shell script entry:

polyspace-c -target mcpu -char-is-16bits

1-14



Target/Compiler Options

-short-is-8bits
This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a short as 16 bits. This
option changes it to 8 bits, regardless of sign.

It sets a short type as 8-bit without specific alignment. That has consequences
for the following:

• computation of size of objects referencing short type

• detection of short underflow/overflow

Example shell script entry

polyspace-c -target mcpu -short-is-8bits

-int-is-32bits
This option is available with a mcpu generic target, hc08, hc12 and mpc5xx
target has been chosen.

The default configuration of a generic target defines an int as 16 bits. This
option changes it to 32 bits, regardless of sign. Its alignment, when an int
is used as struct member or array component, is also set to 32 bits. See also
-align option.

Example shell script entry

polyspace-c -target mcpu -int-is-32bits

-long-long-is-64bits
This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a long long as 32 bits.
This option changes it to 64 bits, regardless of sign. When a long long is used
as struct member or array component, its alignment is also set to 64 bits.
See also -align option.

Example shell script entry

1-15



1 Option Descriptions

polyspace-c -target mcpu -long-long-is-64bits

-double-is-64bits
The default configuration of a generic target defines a double as 32 bits. This
option, changes both double and long double to 64 bits. When a double or
long double is used as a struct member or array component, its alignment
is set to 4 bytes.

See also -align option.

Defining the double type as a 64 bit double precision float impacts the
following:

• Computation of sizeofobjects referencing double type

• Detection of floating point underflow/overflow

This option is available for the following targets:

• mcpu generic target

• sharc21x61

• hc08

• hc12

• mpc5xx

Example

int main(void)
{
struct S {char x; double f;};
double x;
unsigned s1, s2;
s1 = sizeof (double);
s2 = sizeof(struct S);
x = 3.402823466E+38; /* IEEE 32 bits float point maximum value */
x = x * 2;
return 0;

}

1-16



Target/Compiler Options

Using the default configuration of sharc21x62, PolySpace verification
assumes that a value of 1 is assigned to s1, 2 is assigned to s2, and there
is a consequential float overflow in the multiplication x * 2. Using the
–double-is-64bits option, a value of 2 is assigned to s1, and no overflow
occurs in the multiplication (because the result is in the range of the 64-bit
floating point type)

Example shell script entry

polyspace-c -target mcpu -double-is-64bits

-pointer-is-32bits
This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a pointer as 16 bits. This
option changes it to 32 bits. When a pointer is used as struct member or array
component, its alignment is also set also to 32 bits (see -align option).

Example shell script entry

polyspace-c -target mcpu -pointer-is-32bits

-align [8|16|32]
This option is available with a mcpu generic target and some other specific
targets (with hc08, hc12 or mpc5xx available values are 16 and 32). It is used
to set the largest alignment of all data objects to 4/2/1 byte(s), meaning a
32, 16 or 8 bit boundary respectively.

-align 32 (Default). The default alignment of a generic target is 32 bits.
This means that when objects with a size of more than 4 bytes are used as
struct members or array components, they are aligned at 4 byte boundaries.

Example shell script entry with a 32 bits default alignment
polyspace-c -target mcpu

-align 16. If the -align 16 option is used, when objects with a size of
more than 2 bytes are used as struct members or array components, they
are aligned at 2 bytes boundaries.

1-17



1 Option Descriptions

Example shell script entry with a 16 bits specific alignment:

polyspace-c -target mcpu -align 16

-align 8. If the -align 8 option is used, when objects with a size of more
than 1 byte are used as struct members or array components, are aligned
at 1 byte boundaries. Consequently the storage assigned to the arrays and
structures is strictly determined by the size of the individual data objects
without member and end padding.

Example shell script entry with a 8 bits specific alignment:

polyspace-c -target mcpu -align 8

-logical-signed-right-shift
In the Graphical User Interface, the user can choose between arithmetical
and logical computation.

• - Arithmetic: the sign bit remains:

(-4) >> 1 = -2
(-7) >> 1 = -4
7 >> 1 = 3

• - Logical: 0 replaces the sign bit

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
7 >> 1 = 3

Example shell script entry

When using the command line, arithmetic is the default computation mode.
When this option is set, logical computation will be performed.

polyspace-c -logical-signed-right-shift

1-18



Target/Compiler Options

-OS-target
OperatingSystemTargetForPolySpaceStubs
This option specifies the operating system target for PolySpace stubs.

Possible values are ’Solaris’, ’Linux’, ’VxWorks’, ’Visual’ and
’no-predefined-OS’.

This information allows the appropriate system definitions to be used during
preprocessing in order to analyze the included files properly. -OS-target
no-predefined-OS may be used in conjunction with -include or/and -D to give
all of the system preprocessor flags to be used at execution time. Details
of these may be found by executing the compiler for the project in verbose
mode. They are also listed in this document - search for keyword "OS-target
option"

Default:

Solaris

Note Only the Linux include files are provided with PolySpace software (see
the include folder in the installation directory). Projects developed for use
with other operating systems may be analyzed by using the corresponding
include files for that OS. For instance, in order to analyze a VxWorks® project
it is necessary to use the option -I <<path_to_the_VxWorks_include_folder>>

Example shell script entry:

polyspace-c -OS-target linux
polyspace-c -OS-target no-predefined-OS -D GCC_MAJOR=2 /

-include /complete_path/inc/gn.h ...

-D compiler-flag
This option is used to define macro compiler flags to be used during
compilation phase.

Only one flag can be used with each –D as for compilers, but the option can be
used several times as shown in the example below.

1-19



1 Option Descriptions

Default:

Some defines are applied by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-c -D HAVE_MYLIB -D USE_COM1 ...

-U compiler-flag
This option is used to undefine a macro compiler flags

As for compilers, only one flag can be used with each –U, but the option can be
used several times as shown in the example below.

Default:

Some undefines may be set by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-c -U HAVE_MYLIB -U USE_COM1 ...

-include file_name
This option is used to specify files to be included by each C file involved in
the verification.

Default:

No file is universally included by default, but directives such as "#include
<include_file.h>" are acted upon.

Example Shell Script Entry:

polyspace-c -include `pwd`/sources/a_file.h -include
/inc/inc_file.h ...

polyspace-c -include /the_complete_path/my_defines.h ...

1-20



Target/Compiler Options

-post-preprocessing-command <file_name> or
"command"
When this option is used, the specified script file or command is run just
after the preprocessing phase on each source file. The script executes on
each preprocessed c file. The command should be designed to process the
standard output from preprocessing and produce its results in accordance
with that standard output.

Note You can find each preprocessed file in the results directory in the
zipped file ci.zip located in <results/ALL/SRC/MACROS. The extension of
the preprocessed file is .ci.

It is important to preserve the number of lines in the preprocessed .ci file.
Adding a line or removing one could result in some unpredictable behavior on
the location of checks and MACROS in the PolySpace viewer.

Default:

No command.

Example Shell Script Entry – file name:

To replace the keyword “Volatile” by “Import”, you can type the following
command on a Linux workstation:

polyspace-c -post-preprocessing-command `pwd`/replace_keywords

where replace_keywords is the following script:

#!/usr/bin/perl
my $TOOLS_VERSION = "V1_4_1";
binmode STDOUT;

# Process every line from STDIN until EOF
while ($line = <STDIN>)
{

# Change Volatile to Import
$line =~ s/Volatile/Import/;

1-21



1 Option Descriptions

print $line;
}

Note If you are running PolySpace software version 5.1 (r2008a) or later on
a Windows system, you cannot use Cygwin™ shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows
workstation, you must use the option -post-preprocessing-command with
the absolute path to the Perl script, for example:

%POLYSPACE_C%\Verifier\bin\polyspace-c.exe
-post-preprocessing-command
%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe
<absolute_path>\replace_keywords

-post-analysis-command <file_name> or "command"
When this option is used, the specified script file or command is executed
once the verification has completed.

The script or command is executed in the results directory of the verification.

Execution occurs after the last part of the verification. The last part of is
determined by the –to option.

Note Depending of the architecture used (notably when using remote
launcher), the script can be executed on the client side or the server side.

Default:

No command.

1-22



Target/Compiler Options

Example Shell Script Entry – file name:

This example shows how to send an email to tip the client side off that his
verification has been ended. So the command looks like:

polyspace-c -post-analysis-command `pwd`/end_emails

where end_emails is an appropriate Perl script.

Note If you are running PolySpace software version 5.1 (r2008a) or later
on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows
workstation, you must use this option with the absolute path to the Perl
script, for example:

%POLYSPACE_C%\Verifier\bin\polyspace-c.exe -post-analysis-command
%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe
<absolute_path>\end_emails

1-23



1 Option Descriptions

Compliance with Standards Options

In this section...

“-dos” on page 1-24

“Embedded Assembler” on page 1-25

“Strictness during verification launching” on page 1-26

“Permissiveness during verification launching” on page 1-27

“MISRA-C 2004 Rules” on page 1-30

“-dialect [iar|keil]” on page 1-32

“-sfr-types” on page 1-33

-dos

This option must be used when the contents of the include or source
directory comes from a DOS or Windows file system. It deals with upper/lower
case sensitivity and control characters issues.

Concerned files are:

• header files: all include dir specified (-I option)

• source files: all sources files selected for the verification (-sources option)

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

into

#include "../my_test.h"

#include "../my_other_file.h"

Default:

1-24



Compliance with Standards Options

disabled by default

Example Shell Script Entry:

polyspace-c -I /usr/include -dos -I ./my_copied_include_dir -D test=1

Embedded Assembler

• “-discard-asm” on page 1-25

• “Pragmas asm” on page 1-25

-discard-asm
This option instructs the PolySpace verification to discard assembler code. If
this option is used, the assembler code should be modelled in c.

Default:

Embedded assembler is treated as an error.

Example Shell Script Entry:

polyspace-c -discard-asm ...

Pragmas asm
-asm-begin "mark1[mark2[...]] "

and

-asm-end "mark1[mark2[...]]"

These options are used to allow compiler specific asm functions to be excluded
from the verification, with the offending code block delimited by two #pragma
directives.

Consider the following example.

#pragma asm_begin_1

1-25



1 Option Descriptions

int foo_1(void) { /* asm code to be ignored by PolySpace */ }
#pragma asm_end_1
#pragma asm_begin_2
void foo_2(void) { /* asm code to be ignored by PolySpace */ }
#pragma asm_end_2

Where "asm_begin_1" and "asm_begin_2" marks the beginning of asm
sections which will be discarded and “asm_end_1”, respectively "asm_end_2"
mark the end of those sections.

Also refer to the -discard-asm option with regards to the following code:

asm int foo_1(void) { /* asm code to be ignored by PolySpace */ }

asm void foo_2(void) { /* asmcode to be ignored by PolySpace */ }

Note The asm-begin and asm-end options must be used together.

Example Shell Script Entry:

polyspace-c -discard-asm -asm-begin "asm_begin_1,asm_begin_2"
-asm-end "asm_end_1,asm_end_2" …

Strictness during verification launching

• “-strict” on page 1-26

• “-wall” on page 1-27

-strict
This option selects the Strict mode of PolySpace verification. It is equivalent
to using the -Wall and -no-automatic-stubbingoptions simultaneously.

This option is not compatible with -asm-begin and -asm-end options.

1-26



Compliance with Standards Options

-wall
When this option is used, the C compliance phase will print all warnings.
For example, with this option, a warning will raise in the log file during
compilation phase when trying to write into a const variable: “warning:
assignment of read-only member <var>”

Default:

By default, only warnings about compliance across different files
are printed.

Example Shell Script Entry:

polyspace-c -Wall ...

Permissiveness during verification launching

• “-permissive” on page 1-27

• “-permissive-link” on page 1-28

• “-allow-non-int-bitfield” on page 1-28

• “-allow-undef-variables” on page 1-28

• “-ignore-constant-overflows” on page 1-29

• “-allow-unnamed-fields” on page 1-29

• “-allow-negative-operand-in-shift” on page 1-30

-permissive
This option selects the PolySpace permissive mode, which is equivalent
to the simultaneous use of -allow-non-int-bitfield, -allow-undef-variables,
-ignore-constant-overflows, -discard-asm, -permissive-stubber,
-continue-with-red-error, and -permissive-link.

1-27



1 Option Descriptions

-permissive-link
When this option is used, PolySpace verification accepts integral type
conflicts between declarations and definitions on arguments or/and returning
functions.

It has an effect only

• when the size of a conflicting integral type is not greater than int, or

• conflicts occur between a pointer type and an integral type of same size.

Default:

By default, PolySpace verification does not accept any conflicts between
declarations and definitions.

-allow-non-int-bitfield
This option allows the user to define types of bitfields other than those
specified by ANSI® C. The standard accepts bitfields of signed and unsigned
int types only.

Default:

Bitfields must be signed or unsigned int.

Example Shell Script Entry :

polyspace-c -allow-non-int-bitfield ...

-allow-undef-variables
When this option is used, PolySpace verification will continue in case of
linkage errors due to undefined global variables. For instance when this
option is used, PolySpace verification will tolerate a variable always being
declared as extern

Default:

Undefined variables causes PolySpace verification to stop.

1-28



Compliance with Standards Options

Example Shell Script Entry:

polyspace-c -allow-undef-variables ...

-ignore-constant-overflows
This option specifies that the verification should be permissive with regards
to overflowing computations on constants. Note that it deviates from the
ANSI C standard.

For example,

char x = 0xff;

causes an overflow according to the standard, but if it is analyzed using this
option it becomes effectively the same as

char x = -1;

With this second example, a red overflow will result regardless of the use
of the option.

char x = (rnd?0xFF:0xFE);

Default:

char x = 0xff; causes an overflow

Example Shell Script Entry:

polyspace-c -ignore-constant-overflows ...

-allow-unnamed-fields
When this option is used, PolySpace verification will continue in case of
compilation errors due to unnamed fields in structures. For instance when
this option is used, PolySpace verification will tolerate a structure where
fields are unnamed since there are no duplicate names. With the option,
the following source code is tolerate:

struct {

1-29



1 Option Descriptions

union { int x; int y;}
union {int z; int w;}

} s;
s.x = 2; s.z = 2;

Default:

Unnamed fields cause PolySpace to stop.

Example Shell Script Entry:

polyspace-c -allow-unnamed-fields ...

-allow-negative-operand-in-shift
This option permits a shift operation on a negative number.

According to the ANSI C standard, such a shift operation on a negative
number is illegal – for example,

-2 << 2

With this option in use, PolySpace verification considers the operation to be
valid. In the example, the result would be

-2 << 2 = -8

Default:

A shift operation on a negative number causes a red error.

Example Shell Script Entry:

polyspace-c -allow-negative-operand-in-shift ...

MISRA-C 2004 Rules

• “ -misra2 [all-rules | file_name]” on page 1-31

1-30



Compliance with Standards Options

• “-includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]"” on page
1-31

-misra2 [all-rules | file_name]
This option permits to check set of coding rules in conformity to
MISRA-C:2004. All MISRA checks are included in the log file of the
verification.

• Keyword all-rules: It checks all available MISRA C® rules. It implies
the use of the default configuration: any violation of MISRA C rules is
considered as a warning.

• Option filename: it is the name of an absolute ASCII file containing a list
of MISRA® rules to check.

Format of the file:

<rule number> off|error|warning
# is considered as comments.
Example:
# MISRA configuration file for project C89
10.5 off # disable misra rule number 10.5
17.2 error # violation misra rule 17.2 as an error
17.3 warning # non-respect to misra rule 17.3 is a only a warning

Default:

disable

Example shell script entry:

polyspace-c -misra2 all-rules ...

polyspace-c -misra2 misra.txt

-includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]"
This option prevents MISRA rules checking in a given list of files or directories
(all files and subdirectories under selected directory). This option is useful

1-31



1 Option Descriptions

when non-MISRA C conforming include headers are used. A warning is
displayed if one of the parameter does not exist.

This option is authorized only when -misra2 is used.

Example shell script entry :

polyspace-c -misra2 misra.txt includes-to-ignore
"c:\usr\include"

-dialect [iar|keil]
When this option is used, PolySpace verification will take into account some
non Target Support Package™ syntax and semantic associated to a chosen
dialect between IAR and Keil. It refers to the well known compilers of the
company IAR (www.iar.com) and Keil (www.keil.com).

Using this option, PolySpace verification will tolerate some new structure
types as keyword of the language such sfr, sbit, bit etc. These structures and
associated semantics are part of the compiler that have integrated it with the
ANSI C language as an extension.

Example of source code with keil dialect:

unsigned char bdata Status[4];
sfr AU = 0xF0;
sbit OCmd = Status[0]^2;
s^2 = 1; s^6 = 0;

Example with iar dialect:

unsigned char bdata Status[4];
sfr OCmd @ 0x4FFE;
OCmd.2 = 1; s.6 = 0;

Example Shell Script Entry:

polyspace-c dialect keil

1-32

http://www.iar.com/
http://www.keil.com/


Compliance with Standards Options

-sfr-types
Associated to the option -dialect, if the code uses specific sfr type keyword, it
ismandatoryto declare using –sfr-types option. It gives the name of the sfr
type and its size in bits. The syntax is:

-sfr-types <sfr_name>=<size_in_bits>,

where <sfr_name> could be any name, but most of the time we encounter sfr,
sfr16 and sfr32 . <size in bits> could be one of the values 8, 16 and 32.

Default:

No dialect used.

Example Shell Script Entry:

polyspace-c dialect iar sfr-types sfr=8,sfr32=32,sfrb=16

1-33



1 Option Descriptions

PolySpace Inner Settings Options

In this section...

“-unit-by-unit” on page 1-34

“-unit-by-unit-common-source filename” on page 1-35

“MAIN GENERATOR OPTIONS (-main-generator) for PolySpace Software”
on page 1-35

“Stubbing” on page 1-39

“Assumptions” on page 1-41

“Automatic Orange Tester” on page 1-48

“-machine-architecture” on page 1-50

“-max-processes” on page 1-50

“Others” on page 1-51

-unit-by-unit
This option creates a separate verification job for each source file in the
project.

Each file is compiled, sent to the PolySpace Server, and verified individually.
Verification results can be viewed for the entire project, or for individual units.

Note Unit by unit verification is available only for server verifications. It is
not compatible with multitasking options such as -entry-points.

Default:

Not selected

Example Shell Script Entry:

polyspace-c -unit-by-unit

1-34



PolySpace® Inner Settings Options

-unit-by-unit-common-source filename
Specifies a list of files to include with each unit verification. These files are
compiled once, and then linked to each unit before verification. Functions
not included in this list are stubbed.

Default:

None

Example Shell Script Entry:

polyspace-c -unit-by-unit-common-source
c:/polyspace/function.c

MAIN GENERATOR OPTIONS (-main-generator) for
PolySpace Software
This same option can be used for both PolySpace® Client™ for C/C++ and
PolySpace® Server™ for C/C++, but the default behavior differs between the
two:

• Using PolySpace Server the user has the choice as to whether to activate
the option.

• Using PolySpace Client the option is activated by default.

This section describes:

• “PolySpace® Client for C/C++ default behavior” on page 1-36

• “PolySpace® Server for C/C++ default behavior” on page 1-36

• “-main-generator (detailed options)” on page 1-36

• “-main-generator-writes-variables [ none | public | all | custom=v1,v2,.]”
on page 1-37

• “-function-called-before-main function_name” on page 1-37

• “-main-generator-calls [ none | unused | all | custom=f1,f2,...]” on page
1-38

1-35



1 Option Descriptions

PolySpace Client for C/C++ default behavior
There is no need to ascertain whether the code for verification contains a
"main" or not. That is automatically checked by the PolySpace Client for
C/C++ product:

• If a main exists in the set of file(s), then the verification proceeds with
that main.

• Otherwise, the tool generates a main with default options:
-main-generator-writes-variables public and -main-generator-calls unused.

PolySpace Server for C/C++ default behavior
By default, if no main is found in a PolySpace Server for C/C++ verification,
then it will stop. This behavior can help isolate files missing from the
verification.

It is also possible to allow the PolySpace Server for C/C++ product to ascertain
whether or not a main is available.

• If an available main is found, the verification proceeds as usual.

• Otherwise, the tool generates a main with the assumption of verifying a
library. The options used are -main-generator-writes-variables none and
-main-generator-calls none.

-main-generator (detailed options)
This option initiates the default behavior for PolySpace Launcher. The
generated main has three distinct default behaviors.

• It first initializes any variables identified by the option
-main-generator-writes-variables. The default setting for this option is
-main-generator-writes-variables public.

• It then calls a function which could be considered an initialization function
with the option -function-called-before-main.

• It then calls any functions identified by the option -main-generator-calls.
The default setting for this option is -main-generator-calls unused.

1-36



PolySpace® Inner Settings Options

What follows are separate descriptions of the above options that include all of
the possible settings.

-main-generator-writes-variables [ none | public | all |
custom=v1,v2,.]
This option is used with the -main-generator option to dictate how the
generated main will initialize global variables.

Settings available:

• -none— no global variable will be written by the main.

• -public— every variable except static and const variables are assigned a
“random” value, representing the full range of possible values

• -all — every variable except const variables are assigned a “random”
value, representing the full range of possible values

• -custom— only variables present in the list are assigned a “random” value,
representing the full range of possible values

Example
polyspace-c -main-generator -main-generator-writes-variables none
polyspace-c -main-generator -main-generator-writes-variables
custom=variable_a,variable_b

-function-called-before-main function_name
It is possible to specify an initialization function that will be called on startup
after the initialization of the global variables and before the main loop when
using the -main-generator option.

The skeleton of the generated main looks like:

1 Initialization of global variables

2 Call the specified function fname

3 main loop with a call to all the specified functions depending on option
-main-generator-calls

1-37



1 Option Descriptions

Example shell script entry:

polyspace-c -main-generator function-called-before-main
MyInitFunction

-main-generator-calls [ none | unused | all | custom=f1,f2,...]
The generated main will call functions according to this option. It is used with
the -main-generator option, to specify the functions to be called.

Possible values:

• none — no function is called. This can be used with a multitasking
application without a main.

• unused (default) — every function is called by the generated main unless it
is called elsewhere by the code undergoing verification.

• all— every function is called by the generated main except inlined.

• custom — only functions present in the list are called from the main.
Inlined functions can be specified in the list.

An inline (static or extern) function is not called by the generated main
program with values all or unused. An inline function can only be called with
custom value: -main-generator-calls custom=my_inlined_func.

Note When using the unused option, the generated main may call functions
that are also called by a function pointer, meaning these functions may be
called twice.

Example:

polyspace-c -main-generator -main-generator-calls public

polyspace-c -main-generator -main-generator-calls
custom=function_1,function_2

1-38



PolySpace® Inner Settings Options

Stubbing

• “-data-range-specifications file_name” on page 1-39

• “-permissive-stubber” on page 1-40

• “-no-automatic-stubbing” on page 1-40

-data-range-specifications file_name
This option permits the setting of specific data ranges for a list of given
global variables.

For more information, see “Applying Data Ranges to External Variables and
Stub Functions (DRS)”.

File format:

The file filename contains a list of global variables with the below format:

variable_name val_min val_max <init|permanent|globalassert>

Variables scope:

Variables concern external linkage, const variables and not necessary a
defined variable (i.e. could be extern with option -allow-undef-variables).

Note Only one mode can be applied to a global variable.

No checks are added with this option except for globalassert mode.

Some warning can be displayed in log file concerning variables when format
or type is not in the scope.

Default:

Disable.

Example shell script entry:

1-39



1 Option Descriptions

polyspace-c -data-range-specifications range.txt ...

-permissive-stubber
By default, the stubber rejects functions:

• with complex function pointers as parameters

• with function pointers as return type

To eliminate these restrictions and stub all functions, specify the Stub all
functions (-permissive-stubber) option.

Caution Using this option may produce inaccurate results.

Note This option cannot be used with the no-automatic-stubbing option.

-no-automatic-stubbing
By default, PolySpace verification automatically stubs all functions. When
this option is used, the list of functions to be stubbed is displayed and the
verification is stopped.

Benefits:

This option may be used where

• The entire code is to be provided, which may be the case when verifying
a large piece of code. When the verification stops, it means the code is
not complete.

• Manual stubbing is preferred to improve the selectivity and speed of the
verification.

Note This option cannot be used with the permissive-stubber option.

1-40



PolySpace® Inner Settings Options

Default:

All functions are stubbed automatically

Assumptions

• “-div-round-down” on page 1-41

• “-no-def-init-glob” on page 1-42

• “-size-in-bytes” on page 1-42

• “-allow-ptr-arith-on-struct” on page 1-43

• “-ignore-float-rounding” on page 1-45

• “-detect-unsigned-overflows” on page 1-47

• “-known-NTC proc1[,proc2[,...]]” on page 1-48

-div-round-down
This option concerns the division and modulus of a negative number.

The ANSI standard stipulates that "if either operand of / or % is negative,
whether the result of the / operator, is the largest integer less or equal than the
algebraic quotient or the smallest integer greater or equal than the quotient, is
implementation defined, same for the sign of the % operator".

Note a = (a / b) * b + a % b is always true.

Default:

Without the option (default mode), if either operand of / or % is negative,
the result of the / operator is the smallest integer greater or equal than the
algebraic quotient. The result of the % operator is deduced from a % b = a
- (a / b) * b

Example:

1-41



1 Option Descriptions

assert(-5/3 == -1 && -5%3 == -2); is true .

With the -div-round-down option:

If either operand / or % is negative, the result of the / operator is the largest
integer less or equal than the algebraic quotient. The result of the % operator
is deduced from a % b = a - (a / b) * b .

Example:

assert(-5/3 == -2 && -5%3 == 1); is true .

Example Shell Script Entry:

polyspace-c -div-round-down ...

-no-def-init-glob
This option specifies that PolySpace verification should not take into account
default initialization defined by ANSI C. When this option is not used, default
initialization are

• 0 for integers

• 0 for characters

• 0.0 for floats

With the option in use, all global variable will be treated as non initialized -
and therefore cause a red error - if they are read before being written to.

Example Shell Script Entry :

polyspace-c -no-def-init-glob ...

-size-in-bytes
This option allows incomplete or partial allocation of structures. This
allocation can be made by malloc or cast .

1-42



PolySpace® Inner Settings Options

The example below shows an example using malloc. Further explanation can
be found in the section describing the partial and incomplete allocation of
structures. Also refer to the -allow-ptr-arith-on-struct section.

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;
BIG *p = malloc(sizeof(LITTLE));

Default results

p->a = 0 ; // red pointer out of its bounds
or p->b = 0 ; // red pointer out of its bounds
or p->c = 0 ; // red pointer out of its bounds

Results using this option

if (p!= ((void *) 0) ) {
p->a = 0 ; // green pointer within bounds

or p->b = 0 ; // green pointer within bounds
or p->c = 0 ; // red pointer out of its bounds
}

-allow-ptr-arith-on-struct
This option enables navigation within a structure or union from one field
to another, within the rules defined below. It automatically sets the
-size-in-bytes option.

Default

By default, when a pointer points to a variable then the size of the objected
pointed to is that of that variable - regardless of whether it is contained
within a bigger object, like a structure. Therefore, going out of the scope of
this variable leads to a red IDP check (Illegal Dereference Pointer). This is
illustrated below.

struct S {char a; char b; int c;} x;
char *ptr = &x.b;
ptr ++;
*ptr = 1; // red on the dereference, because the pointed

object was "b"

1-43



1 Option Descriptions

Using this option

When this option is used in the above option, PolySpace verification considers
that the object pointed to is now the host object "x". The "ptr" pointer is in
fact pointing to &x, with the correct offset to the field “b” within the structure
of type S (inter-fields and end-padding included). Therefore, the dereference
becomes green

Consider a second example:

struct S {
char a;
/* 3 bytes of padding between 'a', 'b' */
int b;
int c;
char d[3];
unsigned char e:7;
char f;
/* 3 bytes of end padding */

} x;
char *ptr;
struct Nesting_S {
struct S s;
int c;

} z
ptr = (char *)&x.a; ptr++; *ptr = 10; // ptr points to the
padding between a and b
ptr = (char *)&x.b; ptr += 4; *ptr = 10; // ptr points to the
first byte of c
ptr = (char *)&x.d; ptr += 3; *ptr = 10; // ptr points to the
ptr = (char *)&x.f; ptr++; *ptr = 10; // ptr points to the
first byte of end-padding

Note For nested structures, for instance with ptr = (char *)&x.d.a, the
dereference of *ptr is green if ptr remains within x.d. However, even with this
option in use, a red check is generated if the pointer navigates above x.d.a.
That is, if this pointer is incremented or decremented such that it now to
x.a, x.b, or x.c, it causes a red IDP.

1-44



PolySpace® Inner Settings Options

In the third example below, the *ptr access is red regardless of whether the
option is set or not.

With the option set, the ptr pointer points to the structure+offset z.s, and ptr
can safely navigate within this structure z.s, but z.c is outside it.

Without the option, the ptr pointer points to z.s.f, which is only 1 byte long.
So no navigation is allowed, not even within z.s.

ptr = (char *)z.s.f; ptr += 4; *ptr = 10; // ptr points to the
first byte of c:

-ignore-float-rounding
Without this option, PolySpace verification rounds floats according to the
IEEE® 754 standard: simple precision on 32-bits targets and double precision
on target which define double as 64-bits.

With the option, exact computation is performed.

Example:

void ifr(float f)
{
double a,b;
a = 0.2;
b = 0.2;

if ( a + b == 0.4) {
// reached whether -ignore-float-rounding is used or not
assert (1);
f = 1.0F*f;
}

else {
assert (1);
f = 1.0F * f;
// reached only when -ignore-float-rounding is not used

}
}

1-45



1 Option Descriptions

Using this option can lead to different results compared to the "real life"
(compiler and target dependent): Some paths will be reachable or not for
PolySpace verification while they are not (or are) depending of the compiler
and target. So it can potentially give approximate results (green should be
unproven). This option has an impact on OVFL/UNFL checks on floats.

However, this option allows reducing the number of unproven checks because
of the “delta” approximation.

For example:

• FLT_MAX (with option set) = 3.40282347e+38F

• FLT_MAX (following IEEE 754 standard) = 3.40282347e+38F ± Δ

void ifr(float f)
{
double a,b;
a = 0.2;
b = 0.2;

if ( a + b == 0.4) {
assert (1);
f = 1.0F*f; // Overflow never occurs because f <= FLT_MAX.

// reached when -ignore-float-rounding is used
}
else {
assert (1);
f = 1.0F * f; // OVFL could occur when f = (FLT_MAX + D)

// reached when -ignore-float-rounding is not used
}

}

Default:

IEEE 754 rounding under 32 bits and 64 bits.

Example Shell Script Entry:

polyspace-c -ignore-float-rounding ...

1-46



PolySpace® Inner Settings Options

-detect-unsigned-overflows
When this option is selected, verification is more strict with overflowing
computations on unsigned integers than the ANSI C standard requires.

The ANSI C standard states that promotion occurs for logic, bitwise and
arithmetic operators. For char, short, and int types, variables are implicitly
cast into integers before the operation. Then, after the operation, the
variables are downcast into the original type.

Consider the examples below.

Example 1

Using this option, the following example generates an error:

unsigned char x;
x = 255;
x = x+1; //overflow due to this option

Without this option, however, the example does not generate an error.

unsigned char x;
x = 255;
x = x+1; // turns x into 0 (wrap around)

Example 2

Using this option, the following example generates an error:

unsigned char Y=1;
Y = ~Y; //overflow because of type promotion

In this example:

1 Y is coded as an unsigned char: 000000001

2 Y is promoted to an integer: 00000000 00000000 00000000 00000001

3 The operation "~" is performed, making Y: 11111111 11111111 11111111
11111110

1-47



1 Option Descriptions

4 The integer is downcast to an unsigned char, causing an overflow.

Example Shell Script Entry:

polyspace-c -detect-unsigned-overflows ...

-known-NTC proc1[,proc2[,...]]
After a few verifications, you may discover that a few functions "never
terminate". Some functions such as tasks and threads contain infinite loops
by design, while functions that exit the program such as kill_task , exit or
Terminate_Thread are often stubbed by means of an infinite loop. If these
functions are used very often or if the results are for presentation to a third
party, it may be desirable to filter all NTC of that kind in the Viewer.

This option is provided to allow that filtering to be applied. All NTC specified
at launch will appear in the viewer in the known-NTC category, and filtering
will be possible.

Default :

All checks for deliberate Non Terminating Calls appear as red errors, listed
in the same category as any problem NTC checks.

Example Shell Script Entry :

polyspace-c -known-NTC "kill_task,exit"

polyspace-c -known-NTC "Exit,Terminate_Thread"

Automatic Orange Tester

-prepare-automatic-tests
This option activates the PolySpace Automatic Orange Tester. The Automatic
Orange Tester finds runtime errors in the orange (and red) checks remaining
at the end of the PolySpace verification.

1-48



PolySpace® Inner Settings Options

The Automatic Orange Tester results contain precise information to help you
identify the cause of a runtime error. This complements the results review in
the Viewer module of PolySpace Client for C/C++.

For more information, see “Automatically Testing Orange Code”.

The following options are not compatible with -prepare-automatic-tests.

• -entry-points

• -dialect

• -ignore-float-rounding

• -div-round-down

• -entry-points

• -char-is-16bits

• -short-is-8bits

• -respect-types-in-globals

• -respect-types-in-fields

The following options cannot take specific values when you select
-prepare-automatic-tests.

• -align [8|16]

• -target [c-167 | tms320c3c | hc08 | sharc21x61]

• -data-range-specification (in global assert mode)

In addition, when using the Automatic Orange Tester, the -target mcpu
option must be used together with -pointer-is-32bits.

Default :

Disabled

Example Shell Script Entry :

polyspace-c -prepare-automatic-tests ...

1-49



1 Option Descriptions

-machine-architecture
This option specifies whether verification runs in 32 or 64-bit mode.

Note You should only use the option -machine-architecture 64 for
verifications that fail due to insufficient memory in 32 bit mode. Otherwise,
you should always run in 32–bit mode.

Available options are:

• -machine-architecture auto – Verification always runs in 32-bit mode.

• -machine-architecture 32 – Verification always runs in 32-bit mode.

• -machine-architecture 64 – Verification always runs in 64-bit mode.

Default:

auto

Example Shell Script Entry:

polyspace-c -machine-architecture auto

-max-processes
This option specifies the maximum number of processes that can run
simultaneously on a multi-core system. The valid range is 1 to 128.

Note To disable parallel processing, set: -max-processes 1.

Default:

4

Example Shell Script Entry:

polyspace-c -max-processes 1

1-50



PolySpace® Inner Settings Options

Others

• “-extra-flags option-extra-flag” on page 1-51

• “-c-extra-flags flag” on page 1-51

• “-il-extra-flags flag” on page 1-52

-extra-flags option-extra-flag
This option specifies an expert option to be added to the analyzer. Each word
of the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by Technical Support as necessary for your
verifications.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-c -extra-flags -param1 -extra-flags -param2 \

-extra-flags 10 ...

-c-extra-flags flag
This option is used to specify an expert option to be added to a verification.
Each word of the option (even the parameters) must be preceded by
-c-extra-flags.

These flags will be given to you by PolySpace as necessary for your
verifications.

Default:

No extra flags.

Example Shell Script Entry:

1-51



1 Option Descriptions

polyspace-c -c-extra-flags -param1 -c-extra-flags -param2
-c-extra-flags 10

-il-extra-flags flag
This option is used to specify an expert option to be added to a verification.
Each word of the option (even the parameters) must be preceded by
-il-extra-flags.

These flags will be given to you by PolySpace as necessary for your
verifications.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-c -il-extra-flags -param1 -il-extra-flags -param2
-il-extra-flags 10

1-52



Precision/Scaling Options

Precision/Scaling Options

In this section...

“-quick (Deprecated)” on page 1-54

“-O(0-3)” on page 1-54

“-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]” on page 1-55

“-from verification-phase” on page 1-56

“-to verification-phase” on page 1-57

“-context-sensitivity "proc1[,proc2[,...]]"” on page 1-58

“-context-sensitivity-auto” on page 1-58

“-path-sensitivity-delta number” on page 1-58

“-retype-pointer” on page 1-59

“-retype-int-pointer” on page 1-60

“-k-limiting number” on page 1-62

“-no-fold” on page 1-62

“-respect-types-in-globals” on page 1-62

“-respect-types-in-fields” on page 1-63

“-inline "proc1[,proc2[,...]]"” on page 1-64

“-lightweight-thread-model” on page 1-65

“-less-range-information” on page 1-65

1-53



1 Option Descriptions

-quick (Deprecated)

Note This option is deprecated in R2009a and later releases.

quick mode is obsolete and has been replaced with verification PASS0.
PASS0 takes somewhat longer to run, but the results are more complete.
The limitations of quick mode, (no NTL or NTC checks, no float checks,
no variable dictionary) no longer apply. Unlike quick mode, PASS0 also
provides full navigation in the Viewer.

This option is used to select a very fast mode for PolySpace .

Benefits
This option allows results to be generated very quickly. These are suitable
for initial verification of red and gray errors only, as orange checks are too
plentiful to be relevant using this option.

Limitations

• No NTL or NTC are displayed (non termination of loop/call)

• The variable dictionary is not available

• No check is performed on floats

• The call tree is available but navigation is not possible

• Orange checks are too plentiful to be relevant

-O(0-3)
This option specifies the precision level to be used. It provides higher
selectivity in exchange for more verification time, therefore making results
review more efficient and hence making bugs in the code easier to isolate. It
does so by specifying the algorithms used to model the program state space
during verification.

The MathWorks recommends you begin with the lowest precision level. Red
errors and gray code can then be addressed before relaunching PolySpace
verification using higher precision levels.

1-54



Precision/Scaling Options

Benefits:

• A higher precision level contributes to a higher selectivity rate, making
results review more efficient and hence making bugs in the code easier to
isolate.

• A higher precision level also means higher verification time

- -O0 corresponds to static interval verification.

- -O1 corresponds to complex polyhedron model of domain values.

- -O2 corresponds to more complex algorithms to closely model domain
values (a mixed approach with integer lattices and complex polyhedrons).

- -O3 is only suitable for code smaller than 1000 lines of code. For such
codes, the resulting selectivity might reach high values such as 98%,
resulting in a very long verification time, such as an hour per 1000 lines
of code.

Default:

-O2

Example Shell Script Entry:

polyspace-c -O1 -to pass4 ...

-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]
This option is used to specify the list of .c files to be analyzed with a different
precision from that specified generally -O(0-3) for this verification.

In batch mode, each specified module is followed by a colon and the desired
precision level for it. Any number of modules can be specified in this way, to
form a comma-separated list with no spaces.

Default:

All modules are treated with the same precision.

Example Shell Script Entry:

1-55



1 Option Descriptions

polyspace-c -O1 \
-modules-precision myMath:O2,myText:O1, ...

-from verification-phase
This option specifies the verification phase to start from. It can only be used
on an existing verification, possibly to elaborate on the results that you have
already obtained.

For example, if a verification has been completed -to pass1, PolySpace
verification can be restarted -from pass1 and hence save on verification time.

The option is usually used in a verification after one run with the -to option,
although it can also be used to recover after power failure.

Possible values are as described in the -to verification-phase section, with the
addition of the scratch option.

Note

• This option can only be used for client verifications. All server verifications
start from scratch.

• Unless the scratch option is used, this option can be used only if the
previous verification was launched using the option -keep-all-files .

• This option cannot be used if you modify the source code between
verifications.

Default :

scratch

Example Shell Script Entry :

polyspace-c -from c-to-il ...

1-56



Precision/Scaling Options

-to verification-phase
This option specifies the phase after which the verification will stop.

Benefits:

This option provides improved selectivity, making results review more
efficient and making bugs in the code easier to isolate.

• A higher integration level contributes to a higher selectivity rate, leading
to "finding more bugs" with the code.

• A higher integration level also means higher verification time

Note The MathWorks recommends you begin by running -to pass0
(Software Safety Analysis level 0) You can then address red errors and
gray code before relaunching verification using higher integration levels.

Possible values:

• c-compile or "C Source Compliance Checking"

• c-to-il or "C to Intermediate Language"

• pass0 or “Software Safety Analysis level 0”

• pass1 or "Software Safety Analysis level 1"

• pass2 or "Software Safety Analysis level 2"

• pass3 or "Software Safety Analysis level 3"

• pass4 or "Software Safety Analysis level 4"

• other

Note If you use -to other then PolySpace verification will continue until you
stop it manually (via kill-rte-kernel) or stops until it has reached pass20.

Default:

1-57



1 Option Descriptions

pass4

Example Shell Script Entry:

polyspace-c -to "Software Safety Analysis level 3"...

polyspace-c -to pass0 ...

-context-sensitivity "proc1[,proc2[,...]]"
This option allows the precise verification of a procedure with regards to the
discrete calls to it in the analyzed code.

Each check inside the procedure is split into several sub-checks depending
on the context of call. Therefore if a check is red for one call to the procedure
and green for another, both colors will be revealed.

This option is especially useful if a problem function is called from a multitude
of places.

-context-sensitivity-auto
This option is similar to the -context-sensitivity option, except that the system
automatically chooses the procedures to be considered.

-path-sensitivity-delta number
This option is used to improve interprocedural verification precision within
a particular pass (see -to pass1, pass2, pass3 or pass4). The propagation of
information within procedures is done earlier than usual when this option is
specified. That results in improved selectivity and a longer verification time.

Consider two verifications, one with this option set to 1 (with), and one
without this option (without)

• a level 1 verification in (with) (pass1) will provide results equivalent to
level 1 or 2 in the (without) verification

• a level 1 verification in (with) can last x times more than a cumulated level
1+2 verification from (without). "x" might be exponential.

1-58



Precision/Scaling Options

• the same applies to level 2 in (with) equivalent to level 3 or 4 in (without),
with potentially exponential verification time for (a)

Gains using the option

• (+) highest selectivity obtained in level 2. no need to wait until level 4

• (-) This parameter increases exponentially the verification time and might
be even bigger than a cumulated verification in level 1+2+3+4

• (-) This option can only be used with less than 1000 lines of code

Default:

0

Example Shell Script Entry:

polyspace-c -path-sensitivity-delta 1 ...

-retype-pointer
This option can be used to retype variables of pointer types in order to improve
precision of pointer conversions chain.

The principle consists in replacing original type by the aliased object type
when a symbol of pointer type aliases to a single type of objects.

For example, following assert can be proved using -retype-pointer option:

struct A {int a; char b;} s = {1,2};
char *tmp = (char *)&s;
struct A *pa = (struct A*)tmp;
assert((pa->a == 1) && (pa->b == 2));

This principle can be applied to fields of struct/unions of a pointer type.
However, this option set -size-in-bytes option and it does not have expected
precision with -allow-ptr-arith-on-struct.

Moreover, this option is forbidden when using -retype-int-pointer option.

1-59



1 Option Descriptions

Default:

disable by default

Example Shell ScriptEntry:

polyspace-c -retype-pointer ...

-retype-int-pointer
This option can be used to retype variables of pointer to signed or
unsigned integer types in order to improve precision of pointer conversions
chain.

The principle consists in replacing original type by the aliased object type
when a symbol of pointer type aliases to a single type of objects. It applies
only on symbols of signed or unsigned integer types.

For example, following assert can be proved using -retype-int-pointer option:

void function(void)
{
struct S1 {
int x;
int y;
int z;
char t;

} s1 = {1,2,3,4};
struct S2 {
int first;
void *p;

} s2;
int addr;
addr = (int)(&s1);
assert(((struct S1 *)addr)->y == 2); // ASRT is verified
s2.first = (int)(&s1);
assert(((struct S1 *)s2.first)->y == 2); // ASRT is verified

}

1-60



Precision/Scaling Options

However, this option set -size-in-bytes and has no effect when set
-respect-types-in-globals on global symbols of integer types and when set
-respect-types-in-fields on fields of struct/union of integer types.

Some sides effects can be noticed on PolySpace checks concerning initialization
on variables which can be stated as initialization on pointer check (NIP).

This option requires the -retype-pointer option.

This option should be used on:

• Code with memory mapping – When constant bg structures (global
variable) are declared with a pointer and points to const structure, setting
the option will consider that the pointer and the pointer structure are
synonyms (aliased) and precision of the result will increase. Option to
set: -retype-pointer.

• Code close to the communication layer API (code with lot of cast in
(void *)) – When code contains low level drivers, generic pointer (void *) can
be used. It is recommended to use this with an -inline of the functions
containing these casts. Options to set: -retype-pointer -inline.

• Code in which MISRA rule 11.2 is violated – When integers contains
pointers, precision can be improved when setting an option. Option to set:
-retype-int-pointer.

These options are not set by default because they all change the option
-size-in-bytes. Therefore, precision can reduced and some red IDP checks
may be affected. In addition, using these options will consider "x" (previously
int) as a pointer. This results in checks changing category (NIV to NIP).

Default:

Disable by default

Example Shell ScriptEntry:

polyspace-c -retype-int-pointer...

1-61



1 Option Descriptions

-k-limiting number
This is a scaling option to limits the depth of verification into nested
structures during pointer verification.

This option is only available for C and C++.

Default:

There is no fixed limit.

Example Shell Script Entry:

polyspace-c -k-limiting 1 ...

In this example above, verification will be precise to only one level of nesting.

-no-fold
When variables are defined with huge static initialization, scaling problems
may occur during the compilation phase. This option approximates the
initialization of array types of integer, floating point, and char types (included
string) if needed.

It can speed up the verification, but may decrease precision for some
applications

Default:

Option not set.

Example Shell Script Entry:

polyspace-c -no-fold ...

-respect-types-in-globals
This is a scaling option, designed to help process complex code. When it is
applied, PolySpace verification assumes that global variables not declared as
containing pointers are never used for holding pointer values. This option

1-62



Precision/Scaling Options

should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-fields.

In the following example, we will lose precision using option
–respect-types-in-globals option:

int x;
void t1(void) {
int y;
int *tmp = &x;
*tmp = (int)&y;
y=0;
*(int*)x = 1; // x contains address of y
assert (y == 0); // green with the option

}

PolySpace verification will not take care that x contains the address of y
resulting a green assert.

Default:

PolySpace verification assumes that global variables may contain pointer
values.

Example Shell Script Entry:

polyspace-c -respect-types-in-globals ...

-respect-types-in-fields
This is a scaling option, designed to help process complex code. When it is
applied, PolySpace verification assumes that structure fields not declared as
containing pointers are never used for holding pointer values. This option
should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-globals.

In the following example, we will lose precision using option
–respect-types-in-fields option:

struct {
unsigned x;

1-63



1 Option Descriptions

int f1;
int *z[2];

} S1;

void funct2(void) {
int *tmp;
int y;
((int**)&S1)[0] = &y; /* S1.x points on y */
tmp = (int*)S1.x;
y=0;
*tmp = 1; /* write 1 into y */
assert(y==0);

}

PolySpace verification will not take care that S1.x contains the address of y
resulting a green assert.

Default:

PolySpace verification assumes that structure fields may contain pointer
values.

Example Shell Script Entry:

polyspace-c -respect-types-in-fields ...

-inline "proc1[,proc2[,...]]"
A scaling option that creates a clone of a each specified procedure for each
call to it.

Cloned procedures follow a naming convention viz:

procedure1_pst_cloned_nb,

where nb is a unique number giving the total number of cloned procedures.

Such an inlining allows the number of aliases in a given procedure to be
reduced, and may also improve precision.

1-64



Precision/Scaling Options

Restrictions :

• Extensive use of this option may duplicate too much code and may lead to
other scaling problems. Carefully choose procedures to inline.

• This option should be used in response to the inlining hints provided by
the alias verification

• This option should not be used on main, task entry points and critical
section entry points

-lightweight-thread-model
This scaling option can be used to reduce task complexity (see also
-entry-points ).

It uses a slightly less precise model of pointer/thread interaction compared
to that used by default, and is likely to prove helpful when there are a lot of
pointers in an application. See Chapter 3, “Approximations Used During
Verification” for more explanation of when to use it.

It causes a loss of precision:

• It causes a slight loss of precision when shared variables are reads via
pointers.

• Some read/write accesses may not appear in the Global Variable Dictionary.

Default:

disabled by default.

Example Shell Script Entry :

polyspace-c -lightweight-thread-model ...
polyspace-c -lwtm ...

-less-range-information
Limits the amount of range information displayed in verification results.

1-65



1 Option Descriptions

When you select this option, range information is provided on assignments,
but not on reads and operators.

Scaling problems can occur when computing range information on reads and
operators. In these cases, using this option can significantly increase the
speed of the verification.

Default:

Disabled.

Example Shell Script Entry :

polyspace-c -less-range-information

1-66



Multitasking Options (PolySpace® Server™ for C/C++ Product Only)

Multitasking Options (PolySpace Server for C/C++ Product
Only)

In this section...

“-entry-points str1[,str2[,...]]” on page 1-67

“-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"” on page 1-67

“-temporal-exclusions-file file_name” on page 1-68

Note Concurrency options are not compatible with -main-generator options.

-entry-points str1[,str2[,...]]
This option is used to specify the tasks/entry points to be analyzed by
PolySpace server, using a Comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no
parameters, with parameters passed through global variables instead.

Using PolySpace verification, c tasks must have the prototype "void
task_name(void);".

Example Shell Script Entry:

polyspace-c -entry-points proc1,proc2,proc3 ...

-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
-critical-section-begin "proc1:cs1[,proc2:cs2]"

and

-critical-section-end "proc3:cs1[,proc4:cs2]"

These options specify the procedures beginning and ending critical sections,
respectively. Each uses a list enclosed within double speech marks, with

1-67



1 Option Descriptions

list entries separated by commas, and no spaces. Entries in the lists take
the form of the procedure name followed by the name of the critical section,
with a colon separating them.

These critical sections can be used to model protection of shared resources,
or to model interruption enabling and disabling.

Note This option cannot be used for client verifications, or with the
main-generator option.

Default:

no critical sections.

Example Shell Script Entry:

polyspace-c -critical-section-begin "start_my_semaphore:cs" \

-critical-section-end "end_my_semaphore:cs"

-temporal-exclusions-file file_name
This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

• one line for each group of temporally excluded tasks,

• on each line, tasks are separated by spaces.

Note This option cannot be used for client verifications, or with the
main-generator option.

Default:

1-68



Multitasking Options (PolySpace® Server™ for C/C++ Product Only)

No temporal exclusions.

Example Task Specification file

File named ’exclusions’ (say) in the ’sources’ directory and containing:

task1_group1 task2_group1

task1_group2 task2_group2 task3_group2

Example Shell Script Entry :

polyspace-c -temporal-exclusions-file sources/exclusions \

-entry-points task1_group1,task2_group1,task1_group2,\

task2_group2,task3_group2 ...

1-69



1 Option Descriptions

Batch Options

In this section...

“-server server_name_or_ip[:port_number]” on page 1-70

“-sources-list-file file_name” on page 1-70

“-v | -version” on page 1-71

“-h[elp]” on page 1-71

-server server_name_or_ip[:port_number]
Using polyspace-remote-[c] [–server [name or IP address][:<port number>]]
allows you to send a verification to a specific or referenced PolySpace server.

Note If the option –server is not specified, the default server referenced in
the PolySpace-Launcher.prf configuration file will be used as the server.

When a –server option is associated to the batch launching command, the
name or IP address and a port number need to be specified. If the port number
does not exist, the 12427 value will be used by default.

Note also that polyspace-remote- accepts all other options.

Option Example Shell Script Entry:

polyspace-remote-c server 192.168.1.124:12400

polyspace-remote-c

polyspace-remote-c server Bergeron

-sources-list-file file_name
This option is only available in batch mode. The syntax of file_name is the
following:

1-70



Batch Options

• One file per line.

• Each file name includes its absolute or relative path.

The source files are compiled in the order in which they are specified.

Note If you do not specify any files, the software verifies all files in the
source directory in alphabetical order.

Example Shell Script Entry for -sources-list-file:

polyspace-c -sources-list-file "C:\Analysis\files.txt"

polyspace-c -sources-list-file "files.txt"

-v | -version
Display the PolySpace version number.

Example Shell Script Entry:

polyspace-c v

It will show a result similar to:

PolySpace r2007a+

Copyright (c) 1999-2008 The Mathworks, Inc.

-h[elp]
Display in the shell window a simple help in a textual format giving
information on all options.

Example Shell Script Entry:

polyspace-c h

1-71



1 Option Descriptions

1-72



2

Check Descriptions



2 Check Descriptions

Colored Source Code for C

In this section...

“Illegal Pointer Access to Variable or Structure Field: IDP” on page 2-3

“Array Conversion Must Not Extend Range: COR” on page 2-4

“Array Index Within Bounds: OBAI” on page 2-5

“Initialized Return Value: IRV” on page 2-6

“Non-Initialized Variables: NIV/NIVL” on page 2-7

“Non-Initialized Pointer: NIP” on page 2-8

“POW (Deprecated)” on page 2-8

“User Assertion: ASRT” on page 2-8

“Scalar and Float Underflows: UNFL” on page 2-10

“Scalar and Float Overflows: OVFL” on page 2-11

“Float Underflows and Overflows: UOVFL (Deprecated)” on page 2-14

“Scalar or Float Division by Zero: ZDV” on page 2-15

“Shift Amount in 0..31 (0..63):SHF” on page 2-16

“Left Operand of Left Shift is Negative: SHF” on page 2-17

“Function Pointer Must Point to a Valid Function: COR” on page 2-17

“Wrong Type for Argument: COR” on page 2-19

“Wrong Number of Arguments: COR” on page 2-19

“Wrong Return Type of a Function Pointer: COR” on page 2-20

“Wrong Return Type for Arithmetic Functions: COR” on page 2-21

“Pointer Within Bounds: IDP” on page 2-22

“Non Termination of Call or Loop” on page 2-35

“Unreachable Code: UNR” on page 2-45

“Inspection Points” on page 2-47

2-2



Colored Source Code for C

Illegal Pointer Access to Variable or Structure Field:
IDP
This is a check to establish whether in the dereferencing of an expression of
the form ptr+i, the variable/structure field initially pointed to by ptris still the
one accessed. See ANSI C standard ISO/IEC 9899 section 6.3.6.

Consider the following example.

1 int a;
2
3 struct {
4 int f1;
5 int f2;
6 int f3;
7 } S;
8
9 void main(void)
10 {
11 volatile int x;
12
13 if (x)
14 *(&a+1) = 2;
15 // IDP ERROR: &a +1 doesn't point to a any longer
16 if (x)
17 *(&S.f1 +1) = 2;
18 // IDP ERROR: you are not allowed to access f2 like this
19 }

According to the ANSI C standard, it is not permissible to access a variable
(or a structure field) from a pointer to another variable. That is, ptr+i may
only be dereferenced if ptr+i is the address of a subpart of the object pointed
to by ptr(such as an element of the array pointed to by ptr, or a field of the
structure pointed to by ptr).

For instance, the following code is correct because the length of the entity
pointed to by ptr_sreflects the full structure length ofMy_struct (at line 11):

1 typedef struct {
2 int f1;
3 int f2;

2-3



2 Check Descriptions

4 int f3;
5 } My_Struct;
6
7 My_Struct s = {1,2,3};
8
9 int main(void)
10 {
11 My_Struct *ptr_s = &s;
12
13 // change to f2 field
14 *((int *)&s +1) = 2; // Correct evaluation
15
16 return 0;
17 }

Array Conversion Must Not Extend Range: COR
This is a check to establish whether a small array is mapped onto a bigger one
through a pointer cast. Consider the following example.

1
2 typedef int Big[100];
3 typedef int Small[10];
4 typedef short EquivBig[200];
5
6 Small smalltab;
7 Big bigtab;
8
9 void main(void)
10 {
11 volatile int random;
12
13 Big * ptr_big = &bigtab;
14 Small * ptr_small = &smalltab;
15
16 if (random) {
17 Big *new_ptr_big = (Big*)ptr_small; // COR ERROR: array
conversion must not extend range
18 }
19 if (random) {
20 EquivBig *ptr_equivbig = (EquivBig*)ptr_big;

2-4



Colored Source Code for C

21 Small *ptr_new_small = (Small*)ptr_big; // Conversion
verified
22 }
23 }

In the example above, a pointer is initialized to the Big array with the address
of the Small array. This is not legal since it would be possible to dereference
this pointer outside the Small array. Line 20 shows that the mapping of
arrays with same size and different prototypes is acceptable.

Array Index Within Bounds: OBAI
This is a check to establish whether an index accessing an array is compatible
with the length of that array. Consider the following example.

1
2 #define TAILLE_TAB 1024
3 int tab[TAILLE_TAB];
4
5 void main(void)
6 {
7 int index;
8
9 for (index = 0; index < TAILLE_TAB ; index++)
10 {
11 tab[index] = 0;
12 }
13 tab[index] = 1;
14 // OBAI ERROR: Array index out of bounds [0..1023]
15 }

Just after the loop, index equals SIZE_TAB. Thus tab[index] = 1 overwrites
the memory cell just after the last array element.

An OBAI check can also be localized on a + operator, as another example
illustrates.

1 int tab[10];
2
3 void main(void)
4 {

2-5



2 Check Descriptions

5 int index;
6 for (index = 0; index < 10 ; index++)
7 *(tab + index) = 0;
8
9 *(tab + index) = 1; // OBAI ERROR: Array index out of bounds
10 }

Note that the message associated with the check OBAI gives always the range
of the array: Array index out of bounds [0..1023]

Initialized Return Value: IRV
This is a check to establish whether a function returns an initialized value.
Consider the following example.

1
2 extern int random_int(void);
3
4 int reply(int msg)
5 {
6 int rep = 0;
7 if (msg > 0) return rep;
8 }
9
10 void main(void)
11 {
12 int ans;
13
14 if (random_int())
15 ans = reply(1); // IRV verified: function returns an
initialised value
16 else if (random_int())
17 ans = reply(0); // IRV ERROR: function does not return an
initialised value
18 else
19 reply(0); // No IRV checks because the return value
is not used
20
21 }
22

2-6



Colored Source Code for C

23

Variables are often initialized using the return value of functions. However,
in the above example the return value is not initialized for all input parameter
values. In this case, the target variable will not be always be properly
initialized with a valid return value.

Non-Initialized Variables: NIV/NIVL
This is a check to establish whether a variable is initialized before being
read. Consider the following example.

1
2 extern int random_int(void);
3
4 void main(void)
5 {
6 int x,i;
7 double twentyFloat[20];
8 int y = 0;
9
10 if (random_int()) {
11 y += x; // NIV ERROR: Non
Initialized Variable (type: int 32)
12 }
13 if (random_int()) {
14 for (i = 1; i < 20; i++) {
15 if (i % 2) twentyFloat[i] = 0.0;
16 }
17 twentyFloat[2] = twentyFloat[4] + 5.0; // NIV Warning.
Only odd indexes are initialized.
18 }
19 }

The result of the addition is unknown at line 11 because x is not initialized
(UNR unreachable code on "+" operator).

In addition, line 17 shows how PolySpace software prompts the user to
investigate further (by means of an orange check) when all cells have not
been initialized.

2-7



2 Check Descriptions

Note Associated to each message which concerns a NIV check, PolySpace
software gives the type of the variable like the following examples: (type:
volatile int32), (type: int 16), (type: unsigned int 8), etc.

Non-Initialized Pointer: NIP
Check to establish whether a reference is initialized before being dereferenced.
Consider the following example.

2
3 void main(void)
4 {
5 int* p;
6 *p = 0; // NIP ERROR: reference is not initialized
7 }

As p is not initialized, an undefined memory cell would be overwritten at line
6 (*p = 0) (also leading to the unreachable gray check on "*").

POW (Deprecated)

Note The POW check is deprecated in R2009a and later. The POW check no
longer appears in PolySpace results.

Check to establish whether the standard pow function from math.h library is
used with an acceptable (positive) argument.

User Assertion: ASRT
This is a check to establish whether a user assertion is valid. If the assumption
implied by an assertion is invalid, then the standard behavior of the assert
macro is to abort the program. PolySpace verification therefore considers a
failed assertion to be a runtime error. Consider the following example.

1 #include <assert.h>
2
3 typedef enum

2-8



Colored Source Code for C

4 {
5 monday=1, tuesday,
6 wensday, thursday,
7 friday, saturday,
8 sunday
9 } dayofweek ;
10
11 // stubbed function
12 dayofweek random_day(void);
13 int random_value(void);
14
15 void main(void)
16 {
17 unsigned int var_flip;
18 unsigned int flip_flop;
19 dayofweek curDay;
20 unsigned int constant = 1;
21
22 if (random_value()) flip_flop=1; else flip_flop=0;
// flip_flop can randomly be 1 or 0

23 var_flip = (constant | random_value());
// var_flip is always > 0
24
25 if(random_value()) {
26 assert(flip_flop==0 || flip_flop==1); // User Assertion is
verified
27 assert(var_flip>0); // User Assertion is
verified
28 assert(var_flip==0); // ASRT ERROR: Failure User
Assert
29 }
30
31 if (random_value()) {
32 curDay = random_day(); // Random day of the week
33 assert( curDay > thursday); // ASRT Warning: User
assertion may fails
34 assert( curDay > thursday); // User assertion is
verified
35 assert( curDay <= thursday); // ASRT ERROR: Failure User
Assertion

2-9



2 Check Descriptions

36 }
37 }

In the main, the assert function is used in two different manners:

1 To establish whether the values flip_flop and var_flip in the program are
inside the domain which the program is designed to handle. If the values
were outside the range implied by the assert (see line 28), then the program
would not be able to run properly. Thus they are flagged as runtime errors.

2 To redefine the range of variables as shown at line 34 where curDay is
restricted to just a few days. Indeed, PolySpace verification makes the
assumption that if the program is executed without a runtime error at line
33, curDay can only have a value greater than thursday after this line.

Scalar and Float Underflows: UNFL
These are checks to establish whether arithmetic expressions underflow. A
scalar check is used with integer type, and a float check for floating point
expressions. Consider the following example.

1 #include <float.h>
2 extern int random_int(void);
3
4 void main(void)
5 {
6 int i = 1;
7 float fval = FLT_MAX;
8
9 i = -2 * (i << 30); // i = -2**31
10 if (random_int()) i = i - 1; // UNFL ERROR: scalar
variable is underflow
11 if (random_int()) fval = -2 * fval; // UNFL ERROR: float
variable is underflow
12 }
13

The minimum integer value on a 32 bit architecture platform is represented
by -2**31, thus adding (-1)will raise an underflow.

2-10



Colored Source Code for C

Float Underflow Versus Values Near Zero: UNFL
The definition of the word "underflow" differs between the ANSI standard
and the ANSI/IEEE 754-1985 standard. According to the former definition,
underflow occurs when a number is sufficiently negative for its type not to
be capable of representing it. According to the latter, underflow describes
the erroneous representation of a value close to zero due to the limits of its
representation.

PolySpace verifications apply the former definition. The latter definition
does not impose the raising of an exception as a result of an underflow. By
default, processors supporting this standard permit the deactivation of such
exceptions.

Consider the following example.

2 #define FLT_MAX 3.40282347e+38F // maximum representable
float found in <float.h>
3 #define FLT_MIN 1.17549435e-38F // minimum normalised
float found in <float.h>
4
5 void main(void)
6 {
7 float zer_float = FLT_MIN;
8 float min_float = -(FLT_MAX);
9
10 zer_float = zer_float * zer_float; // No check underflow
near zero
11 min_float = min_float * min_float; // UNFL ERROR:
underflow checked by verifier
12
13 }

Scalar and Float Overflows: OVFL
These are checks to establish whether arithmetic expressions overflow.
This is a scalar check with integer type and float check for floating point
expression. Consider the following example.

1 #include <float.h>
2 extern int random_int(void);
3

2-11



2 Check Descriptions

4 void main(void)
5 {
6 int i = 1;
7 float fvalue = FLT_MAX;
8
9 i = i << 30; // i = 2**30
10 if (random_int())
11 i = 2 * (i - 1) + 2; // OVFL ERROR: 2**31 is an overflow
value for int32
12 if (random_int())
13 fvalue = 2 * fvalue + 1.0; // OVFL ERROR: float variable is
overflow
14 }

On a 32 bit architecture platform, the maximum integer value is 2**31-1, thus
2**31will raise an overflow.

In the same manner, if fvaluerepresents the biggest float its double cannot be
represented with same type and raises an overflow.

How Much is the Biggest Float in C?
There are occasions when it is important to understand when overflow may
occur on a float value approaching its maximum value. Consider the following
example.

void main(void)
{
float x, y;
x = 3.40282347e+38f; // is green
y = (float) 3.40282347e+38; // OVFL red

}

There is a red error on the second assignment, but not the first. The real
"biggest" value for a float is: 340282346638528859811704183484516925440.0
- MAXFLOAT -.

Now, rounding is not the same when casting a constant to a float, or a
constant to a double:

• floats are rounded to the nearest lower value;

2-12



Colored Source Code for C

• doubles are rounded to the nearest higher value;

• 3.40282347e+38 is strictly bigger than
340282346638528859811704183484516925440 (named MAXFLOAT).

• In the case of the second assignment, the value is cast to a double first
- by your compiler, using a temporary variable D1 -, then into a float -
another temporary variable -, because of the cast. Float value is greater
than MAXFLOAT, so the check is red.

• In the case of the first assignment, 3.40282347e+38f is directly cast into a
float, which is less than MAXFLOAT

The solution to this problem is to use the "f" suffix to specify the variable
directly as a float, rather than casting.

What is the Type of Constants/What is a Constant Overflow?
Consider the following example, which would cause an overflow.

int x = 0xFFFF; /* OVFL */

The type given to a constant is the first type which can accommodate its
value, from the appropriate sequence shown below. (See “Predefined Target
Processor Specifications (size of char, int, float, double...)” in the PolySpace
Products for C User’s Guide for information about the size of a type depending
on the target.)

Decimals int , long , unsigned long

Hexadecimals Int, unsigned int, long, unsigned
long

Floats double

For examples (assuming 16-bits target):

5.8 double

6 int

65536 long

0x6 int

2-13



2 Check Descriptions

0xFFFF unsigned int

5.8F float

65536U unsigned int

The options -ignore-constant-overflows allow the user to bypass this limitation
and consider the line:

int x = 0xFFFF; /* OVFL */ as int x = -1; instead of 65535, which does not fit
into a 16-bit integer (from -32768 to 32767).

Left shift overflow on signed variables: OVFL
Overflows can be also be encountered in the case of left shifts on signed
variables. In the following example, the higher order bit of 0x41021011
(hexadecimal value of 1090654225) has been lost, highlighting an overflow
(integer promotion).

1
2 void main(void)
3 {
4 int i;
5
6 i = 1090654225 << 1; // OVFL ERROR: on left shift range
7 }

Float Underflows and Overflows: UOVFL
(Deprecated)

Note The UOVFL check is deprecated in R2009a and later. The UOVFL
check no longer appears in PolySpace results. Instead of a single UOVFL
check, the results now display two checks, a UNFL and an OVFL.

The check UOVFL only concerns float variables. PolySpace verification
shows an UOVFL when both overflow and underflow can occur on the same
operation.

1 #include <math.h>
2 extern int random(void);

2-14



Colored Source Code for C

3 #define FLT_MAX 3.40282347e+38F
4
5 int toto(void)
6 {
7 float x;
8 if (random())
9 {
10 x = -FLT_MAX;
11 }
12 else if (random())
13 {
14 x = FLT_MAX;
15 }
16 else
17 {
18 x = 0;
19 }
20 x = 2.0F * x; // UOVFL unproven: possible overflow and
underflow
21 return 1;
22 }

According to the branch in use, the results of the operation 2.0F * x could
overflow or underflow.

Scalar or Float Division by Zero: ZDV
This is a check to establish whether the right operand of a division (that is,
the denominator) is different from 0[.0]. Consider the following example.

1 extern int random_value(void);
2
3 void zdvs(int p)
4 {
5 int i, j = 1;
6 i = 1024 / (j-p); // ZDV ERROR: Scalar Division by Zero
7 }
8
9 void zdvf(float p)
10 {

2-15



2 Check Descriptions

11 float i,j = 1.0;
12 i = 1024.0 / (j-p); // ZDV ERROR: float Division by Zero
13 }
14
15 int main(void)
16 {
17 volatile int random;
18 if (random_value()) zdvs(1);
// NTC ERROR: because of ZDV ERROR
in ZDVS.
19 if (random_value()) zdvf(1.0);
// NTC ERROR: because of ZDV ERROR
in ZDVF.
20 }

Shift Amount in 0..31 (0..63):SHF
This is a check to establish whether a shift (left or right) is bigger than the
size of the integral type operated upon (int or long int). The range of allowed
shift depends on the target processor: 16 bits on c-167, 32 bits on i386 for int,
etc. Consider the following example.

1 extern int random_value(void);
2
3 void main(void)
4 {
5 volatile int x;
6 int k, l = 1024; // 32 bits on i386
7 unsigned int v, u = 1024;
8
9 if (x) k = l << 16;
10 if (x) k = l >> 16;
11
12 if (x) k = l << 32; // SHF ERROR
13 if (x) k = l >> 32; // SHF ERROR
14
15 if (x) v = u >> 32; // SHF ERROR
16 if (x) k = u << 32; // SHF ERROR
17
18 }

2-16



Colored Source Code for C

In this example, it is shown that the shift amount is greater than the integer
size.

Left Operand of Left Shift is Negative: SHF
This is a check to establish whether the operand of a left shift is a signed
number. Consider the following example.

1
2
3 void main(void)
4 {
5 int x = -200;
6 int y;
7
8 y = x << 1; // SHF ERROR: left operand must be positive
9
10 }

As an aside, note that the -allow-negative-operand-in-shift option used at
launching time instructs PolySpace software to permit explicitly signed
numbers on shift operations. Using the option in the example above would
see the red check at line 8 transformed in a green one. Similarly, if the
verification had included the expression -2 << 2 at line 9, then that line
would have been given a green check and y would assume a values of -8.

Function Pointer Must Point to a Valid Function: COR
This is a check to establish whether a function pointer points to a valid
function, or to function with a valid prototype. Consider the following example.

1
2 typedef void (*CallBack)(float *data);
3
4 struct {
5 int ID;
6 char name[20];
7 CallBack func;
8 } funcS;
9
10 float fval;

2-17



2 Check Descriptions

11
12 void main(void)
13 {
14 CallBack cb = (CallBack)((char*)&funcS + 24*sizeof(char));
15
16 cb(&fval); // COR ERROR: function pointer must point
to a valid function
17 }

In the example above, func has a prototype in conformance with CallBack’s
declaration. Therefore func is initialized to point to the NULL function
through the global declaration of funcS.

Consider a second example.

1
2 #define MAX_MEMSEG 32764
3 typedef void (*ptrFunc)(int memseg);
4 ptrFunc initFlash = (ptrFunc)(0x003c);
5
6 void main(void)
7 {
8 int i;
9
10 for (i = 0 ; i < MAX_MEMSEG; i++) // NTL propagation
11 {
12 initFlash(i); // COR ERROR: function pointer must point to a
valid function
13 }
14
15 }

As PolySpace verification does not take the memory mapping of programs into
account, it cannot ascertain whether 0x003 is the address of a function code
segment or not (for instance, as far as PolySpace verification is concerned it
could be a data segment). Thus a certain (red) error is raised.

2-18



Colored Source Code for C

Wrong Type for Argument: COR
This is a check to establish whether each argument passed to a function
matches the prototype of that function. Consider the flowing example.

1
2 typedef struct {
3 float r;
4 float i;
5 } complex;
6
7 typedef int (*t_func)(complex*);
8
9 int foo_type(int *x)
10 {
11 if (*x%2 == 0) return 0;
12 else return 1;
13 }
14
15 void main(void)
16 {
17 t_func ptr_func;
18 int j,i = 0;
19
20 ptr_func = foo_type;
21 j = ptr_func(&i); // COR ERROR: wrong type of argument for #1
22 }
23

In this example, ptr_func is a pointer to a function which expects a pointer
to a complex as input argument. However, the parameter used is a pointer
to an int.

Wrong Number of Arguments: COR
This is a check to establish whether the number of arguments passed to a
function matches the number of arguments in its prototype. Consider the
following example.

1
2 typedef int (*t_func_2)(int);

2-19



2 Check Descriptions

3 typedef int (*t_func_2b)(int,int);
4
5 int foo_nb(int x)
6 {
7 if (x%2 == 0)
8 return 0;
9 else
10 return 1;
11 }
12
13
14 void main(void)
15 {
16 t_func_2b ptr_func;
17 int i = 0;
18
19 ptr_func = (t_func_2b)foo_nb;
20 i = ptr_func(1,2); // COR ERROR: the wrong number of arguments
21 }
22

In this example, ptr_funcis a pointer to a function that takes two arguments
but it has been initialized to point to a function that only takes one.

Wrong Return Type of a Function Pointer: COR
This is a check to establish whether the return type passed to a function
pointer matches the declaration in its prototype. Consider the following
example.

1
2 typedef int (*t_func_2)(int);
3 typedef double (*t_func_2b)(int);
4
5 int foo_nb(int x)
6 {
7 if (x%2 == 0)
8 return 0;
9 else
10 return 1;

2-20



Colored Source Code for C

11 }
12
13
14 void main(void)
15 {
16 t_func_2b ptr_func;
17 int i = 0;
18
19 ptr_func = (t_func_2b)foo_nb;
20 i = ptr_func(1,2); // COR ERROR: function pointer must
point on a valid function
21 // COR Warning: return type of function
is INT but a FLOAT was expected
22 }
23

In this example, ptr_func is a pointer to a function that return a double
but it has been initialized to point to a function that returns an int. The
understanding of the red error is given in the orange associated COR message.

Wrong Return Type for Arithmetic Functions: COR
This is a check to establish whether that a wrong return type is used for
an arithmetic function.

Using arithmetic functions without including <math.h> is compiler dependent
in the real world because compiler could associate a integral return type to
an implicit function.

However, as arithmetic functions are built-in in PolySpace software, you can
face an inconsistency problem <math.h> is not explicitly included in the code
file where an arithmetic function is used. All arithmetic function declared
in <math.h> are concerned.

Consider the following examples:

Results without <math.h>:

1
2 int main(void) {

2-21



2 Check Descriptions

3
4 double x;
5 x = cos(2*3.1415); // COR ERROR: return type of
function cos is INT 32 but a float 64 was expected
6 }

Results with <math.h>:

1 #include <math.h>
2 int main(void) {
3
4 double x;
5 x = cos(2*3.1415);
6 }

In the previous example without the definition of <math.h>, cos is declared
without prototype and default return type is an int32.

Pointer Within Bounds: IDP
Check to establish whether a reference refers to a valid object (whether a
dereference pointer is still within the bounds of the object it intended to
point to).

Consider the following example.

1
2 #define TAILLE_TAB 1024
3 int tab[TAILLE_TAB];
4 int *p = tab;
5
6 void main(void)
7 {
8
9 int index;
10
11 for (index = 0; index < TAILLE_TAB ; index++, p++)
12 {
13 *p = 0;
14 }
15

2-22



Colored Source Code for C

16 *p = 1; // IDP ERROR: reference refers to an invalid object
17 }

In the example, the pointer p is initialized to point to the first element of
the tab array at line 4. When the loop is exited, p points beyond the last
element of the array.

Thus line 16 overwrites memory illegally.

Understanding Addressing

• “I Systematically Have an Orange Out of Bounds Access On My Hardware
Register” on page 2-23

• “The NULL Pointer Case” on page 2-25

• “Comparing Address” on page 2-27

I Systematically Have an Orange Out of Bounds Access On My
Hardware Register. Many code verifications exhibit orange out of bound
checks with respect to accesses to absolute addresses and/or hardware
registers.

(Also refer to the discussion on Absolute Addressing)

Here is an example of what such code might look like:

#define X (* ((int *)0x20000))
X = 100;
y = 1 / X; // ZDV check is orange because

// X ~ [-2^31, 2^31-1] permanently.
// The pointer out of bounds check is orange because 0x20000
// may address anything of any length
// NIV check is orange on X as a consequence

2-23



2 Check Descriptions

3 void main (void)
4 {
5 int y;
6
7 X = 100;
8 y = 1 / X;
9
10 }

int *p = (int *)0x20000;
*p = 100;
y = 1 / *p; // ZDV check is orange because

// *p ~ [-2^31, 2^31-1] permanently
// The pointer out of bounds is orange because 0x20000
// may address anything of any length
// NIV check on *p is orange as a consequence

This can be addressed by defining registers as regular variables:

Replace By

#define X .... int X;

2-24



Colored Source Code for C

Replace By

int *p; int _p;#define p (&_p)

Note Check that the chosen
variable name (p in this example)
doesn’t already exist

int *p; volatile int _p;int *p = &_p;

See “Volatile” for a discussion of an approach which will help avoid the orange
check on the pointer dereference, but retains the representation of a “full
range” variable.

The NULL Pointer Case. Consider the NULL address, viz.

#define NULL ((void *)0)

• It is illegal to dereference this NULL address;

• 0 is not treated as an absolute address.

*NULL = 100; //produces a red - Illegal Dereference Pointer (IDP)

Assuming these declarations:-

int *p = 0x5;
volatile int y;

and these definitions:-

#define NULL ((void *) 0)
#define RAM_MAX ((int *)0xffffffff)

consider the code snippets below.

While (p != (void *)0x1)
p--; // terminates

2-25



2 Check Descriptions

0x1 is an absolute address, it can be reached and the loop terminates

for (p = NULL; p <= RAM_MAX; p++)
{
*p = 0; // illegal dereference of pointer

}

At the first iteration of the loop p is a NULL pointer. Dereferencing a
NULL pointer is forbidden.

While (p != NULL)
{
p--;
*p = 0; // Orange dereference of a pointer

}

When p reaches the address 0x0, there is an attempt to considered it as
an absolute address

In effect, it is an attempt to dereference a NULL pointer - which is forbidden.

Note In this case, the check is orange because the execution of the code
here is OK (green) until 0x0 is reached (red)

The best way to address this issue depends on the purpose of the function.

• Thanks to the default behavior of PolySpace software, it is easy to
automatically stub a function whose purpose is to copy data from/to RAM
or to compute a checksum on RAM.

• If a function is supposed to copy calibration data, it should also be stubbed
automatically.

• If the purpose of a function is to map EEPROM data to global variables,
then a manually written stub is essential to ensure the assignment of the
correct initialization values to them.

2-26



Colored Source Code for C

Comparing Address. PolySpace software only deals with the information
referred to by a pointer, and not the physical location of a variable.
Consequently it does not compare addresses of variables, and makes no
assumption regarding where they are located in memory.

Consider the following two examples of PolySpace verification
behavior:

int a,b;
if (&a > &b) // condition can be true and/or false
{ } // both branches are reachable
else
{ } // both branches are reachable

and

int x,z;
void main(void)
{ int i;
x = 12;
for (i=1; i<= 0xffffffff; i++)
{
*((int *)i) = 0;

}
z = 1 / x; // ZDV green check because PolySpace doesn't consider

// any relationship between x and its address
}

“x” is aliased by no other variable. No pointer points to “x” in this example,
so as far as the PolySpace verification is concerned, “x” remains constantly
equal to 12.

Understanding Pointers
PolySpace software does not analyze anything which would require the
physical address of a variable to be taken into account.

• Consider two variables x and y. PolySpace verification will not make a
meaningful comparison of “&x” (address of x) and “&y”

2-27



2 Check Descriptions

• So, the Boolean (&x < &y) can be true or false as far as PolySpace
verification is concerned.

However, PolySpace verification does keep track of the pointers that point to
a particular variable.

• So, if ptr points to X, *ptr and X will be synonyms.

Address Alignment: the bitfield Example. Structure size depends on
bit alignment.

Consider the following example, where an attempt is made to map a character
to a bitfield.

struct reg {
unsigned int a: 5;
unsigned int b: 3;

};
int main()
{
volatile unsigned char c;
struct reg *r;
r = (struct reg *) &c;
if (r-> a == 10)
return 1;

return 0;
}

Consider a 32 bit target architecture (so int are 32 bits, i.e. 4 bytes). The size
of a bit field is the size of the type of its elements. In the example above, the
elements in the bit field are unsigned int, hence the size is 4 bytes. Since this
is greater than 1, the structure reg cannot be contained in the char c.

This can be solved by using the unsigned char type for the elements in the bit
field. The size of the bit field is then 1 byte and there is therefore no red error.

struct reg {
unsigned char a: 5;
unsigned char b: 3;

};
int main()

2-28



Colored Source Code for C

{
volatile unsigned char c;
struct reg *r;
r = (struct reg *) &c;
if (r-> a == 10)
return 1;

return 0;
}

Note You must also use the option -allow-non-int-bitfield to implement this
solution, since this is an extension to the ANSI standard.

How Does malloc Work for PolySpace Verification?. PolySpace
verification accurately models malloc, such that both the possible return
values of a null pointer and the requested amount of memory are taken into
account.

Consider the following example.

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
*q = 'a'; // results in an orange dereference check

}

This code will avoid the orange dereference:

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
if (p!= NULL)
*q = 'a'; // results in a green dereference check

}

2-29



2 Check Descriptions

Data Mapping into a Structure . It often happens that structured data
are read as a char array. Before manipulating them it might be desirable
to map those data into a structure that reflects their organization. In the
following example an IDP warning (orange check) at line 22 suggests that the
correctness of the code needs to be confirmed.

1
2
3 typedef struct
4 {
5 unsigned int MsgId;
6 union {
7 float fltv;
8 unsigned int intv;
9 } Msgbody;
10 } Message;
11
12 int random_int(void);
13 Message *get_msg(void);
14 void wait_idl(void);
15
16 void treatment_msg(char *msg)
17 {
18 Message *ptrMsg;
19
20 ptrMsg = (Message *)msg;
21 if (ptrMsg != NULL) {
22 if (ptrMsg->MsgId) { // IDP Warning: reference may not
refer to a valid object
23 // ...
24 }
25 }
26 }
27
28 int main (void) {
29
30 Message *msg;
31
32 while(random_int()) {
33 msg = get_msg();

2-30



Colored Source Code for C

34 if (msg) treatment_msg((char *)msg);
35 wait_idl();
36 }
37 return 0;
38 }

Mapping of a small structure into a bigger one. For example, suppose
that p is a pointer to an object of type t_struct and it is initialized to point to
an object of type t_struct_bis.

Now suppose that the size of t_struct_bis is less than the size of t_struct.
Under these circumstances, it would be illegal to dereference p because it
would be possible to access memory outside of t_struct_bis.

Consider the following example.

1 #include <malloc.h>
2
3 typedef struct {
4 int a;
5 union {
6 char c;
7 float f;
8 } b;
9 } t_struct;
10
11 void main(void)
12 {
13 t_struct *p;
14
15 // optimize memory usage
16 p = (t_struct *)malloc(sizeof(int)+sizeof(char));
17
18 p->a = 1; // IDP ERROR: not allowed to deference p
19
20 }

2-31



2 Check Descriptions

Partially allocated pointer (-size-in-bytes). According to the ANSI
standard, the whole of a structure must be populated for that structure to be
valid. In this case, the pointer is said to be fully allocated. A pointer is said
to be partly allocated when only the first part of a structure is populated.
In some development environments, that approach is tolerated despite the
ANSI stance.

By default, PolySpace verification strictly conforms to the standard and
checks for adherence to it. A more tolerant approach can be specified by using
the -size-in-bytes option. So, depending on the -size-in-bytes option, when a
partially allocated pointer is encountered during a PolySpace verification, the
first elements of the allocated object may or may not be considered as valid.

First consider the following example. (A second example follows it to illustrate
how this might apply to pointer arithmetic within a structure)

1 typedef struct _little { int a; int b; } LITTLE;
2 typedef struct _big { int a; int b; int c; } BIG;
3
4 int main(void)
5 {
6 BIG *p = malloc(sizeof(LITTLE));
7 volatile int y;

With -size-in-bytes option

9 if (p==((void *)0)) return 0;
10 if(y) { p->a = 0; } // green
11 if(y) { p->b = 0; } // green
12 if(y) { p->c = 0; } // red
}

Default launching option

9 if(y) { p->a = 0 ; } // red
10 if(y) { p->b = 0 ; } // red
11 if(y) { p->c = 0 ; } // red
12
13 if (p==((void *)0))
14 return 0;
15 else

2-32



Colored Source Code for C

16 return 1; // dead code
17 return 1;
18 }

With the standard launching option, a pointer that has not been allocated to a
complete structure is considered invalid, or NULL (as shown in the dead code).

Pointer to a structure field. According to the ANSI C standard, pointer
arithmetic is to be independent of the size of the object (structure or array) to
which the pointer points. By default, PolySpace verification strictly conforms
to the standard and checks for adherence to it.

In some development environments an approach that does not recognize
that requirement is tolerated, despite the ANSI stance. Under those
circumstances, results are likely to include red pointer out of bounds checks
unexpectedly.

A more tolerant approach can be specified at launch time. Consider the
following examples.

char *p; // the size of the object pointed to is unknown,
// but arithmetic on this pointer is well defined.
// p = p + 5; will increment the location pointed to by
5 bytes (if the
size of a char is 1 byte)
int x; // assuming that an int is 4 bytes
p = &x; *p = 0; // the first byte of x
p++; *p = 0; // the second byte of x
p++; *p = 0; // the third byte of x
p++; *p = 0; // the fourth byte of x
p++; *p = 0; // an out of bound access

For structures, the same behavior can be applied.

struct { int a; int b; } x;
char *p = &x.a; // the pointed object is not the structure
but the field
*p = 0; // it is the first byte of x.a
p++; *p = 0; // it is the second byte of x.a
p++; *p = 0; // it is the third byte of x.a

2-33



2 Check Descriptions

p++; *p = 0; // it is the fourth byte of x.a
p++; *p = 0; // here is an out of bound access because
we are out of the field

If you wish to tolerate an approach which allows a pointer to go from one field
to another, you can do so by using the -size-in-bytes option together with
the -allow-ptr-arith-on-struct option . When a pointer points to a field in a
structure, you will then be allowed to access other fields from this pointer.
Note that as a consequence, any other "out of bound" accesses in the code
will be ignored.

An alternative solution is to make your variable point to the structure rather
than to the field, as follows:

struct { int a; int b; } x;
char *p = &x; // the pointed object is the structure
*p = 0; // we are modifying x.a (first byte)
p++; *p = 0; // we are modifying x.a (second byte)
p++; *p = 0; // we are modifying x.a (third byte)
p++; *p = 0; // we are modifying x.a (fourth byte)
p++; *p = 0; // we are modifying x.b (fifth byte)

A further alternative is to follow the ANSI C recommendation to use the
“offsetof()” function, which jumps to the corresponding offset within the
structure:-

#include <stddef.h>
typedef struct _m { int a; int b; } S;
S x;
char *p = (char *) &x + offsetof(S,b); // points to field b

I have a red when reading a field of one structure. Consider the
following example.

5 typedef struct {
6 unsigned char c1;
7 unsigned char c2;
8 } my_struct;
9
10 int main(void)
11 {

2-34



Colored Source Code for C

12 my_struct v;
13 unsigned short x=0,y=0;
14
15 v.c1=9;
16 v.c2=15;
17 x = *((unsigned short *)&v.c1);

Just like the example in “Pointer to a structure field” on page 2-33, the object
pointed to is the field in the structure, not the structure itself. Therefore, it
is only possible to navigate inside this field. A short variable occupies more
memory than a char, so it is a red pointer out of bounds.

This can be addressed by replacing

x = * ((unsigned short *) &v.c1);

with

y = (v.c1 << sizeof(v.c2)*8 ) | v.c2;

This solution also ensures that the code is no longer target dependent.

Non Termination of Call or Loop
NTC and NTL are informative red (or orange) checks.

• They are the only red checks which can be filtered out as shown below

• They don’t stop the verification

• As for other red checks, code found after them are gray (unreachable)

• These checks may only be red. There are no “orange” NTL or NTC checks.

• They can reveal a bug, or can simply just be informative

2-35



2 Check Descriptions

NTL In a Non Terminating Loop, the break condition is never met.
Here are some examples.

while(1) { function_call(); } // informative NTL

while(x>=0) {x++; } // where x is an unsigned int. This may reveal
a bug?

for(i=0; i<=10; i++) my_array[i] = 10; // where “int my_array[10];”
applies. This red NTL reveals a bug in the array access, flagged in
orange

ptr = NULL; for(i=0; i<=100; i++) *ptr=0; // the first iteration of the
loop is red, and therefore it is flagged as an NTL. The “i++” will
be gray, because the first iteration crashed.

NTC Suppose that a function calls f(), and that function call is flagged
with a red NTC check. There could be five distinct explanations:

• “f” contains a red error;

• “f” contains an NTL ;

• “f” contains an NTC;

• “f” contains an orange which is context dependant; that is, it
is either red or green. For this particular call, it makes the
function “f” crash.

• “f” is a mathematical function, such as sqrt, acos which has
always an invalid input parameter

Remember, additional information can be found when clicking
on the NTC

Note A sqrt check is only colored if the input parameter is never valid. For
instance, if the variable x may take any value between -5 and 5, then sqrt(x)
has no color.

The list of constraints which cannot be satisfied (found by clicking on the NTC
check) represents the variables that cause the red error inside the function.

2-36



Colored Source Code for C

The (potentially) long list of variables can help to understand the cause of the
red NTC, as it shows each condition causing the NTC

• where the variable has a given value; and

• where the variable is not initialized. (Perhaps the variable is initialized
outside the set of files under verification?).

If a function is identified which is not expected to terminate (such as a loop
or an exit procedure) then the -known-NTC function is an option. You will
find all the NTCs and their consequences in the k-NTC facility in the Viewer,
allowing you to filter them.

Non Termination of a Call: NTC
This is a check to establish whether a procedure call returns. It is not the
case when the procedure contains an endless loop or a certain error, or if the
procedure calls another procedure which does not terminate. In the latter
instance, the status of this check is propagated to caller.

1
2
3 void foo(int x)
4 {
5 int y;
6 y = 1 / x; // Warning ZDV: its depends of the context
7 while(1) { // NTL ERROR: loop never terminates
8 if ( y != x) {
9 y = 1 / (y-x);
10 }
11 }
12 }
13
14 void main(void) {
15 volatile int _x;
16
17 if (_x)
18 foo(0); // NTC ERROR: Zero DiVision (ZDV) in foo
19 if (_x)
20 foo(2); // NTC ERROR: Non Termination Loop (NTL) in foo
21

2-37



2 Check Descriptions

22 }
23

In this example, the function foo is called twice in main and neither of these 2
calls ever terminates.

1 The first never returns because a division by zero occurs at line 6 (bad
argument value),

2 The second never terminates because of an infinite loop (red NTL) at line 7.

Also with reference to the example and as an aside, note that by using either
the -context-sensitivity "foo" option or the -context-sensitivity-auto option at
launch time it would be possible for PolySpace verification to show explicitly
that a ZDV error comes from the first call of foo in main.

Note An NTC check can only be red or uncolored, unless you use the
-context-sensitivity option. If you use the -context-sensitivity option, NTC
checks can also be orange.

Known Non-Termination of a Call: k-NTC
By using the -known-NTC option with a specified function at launch time it
is possible to transform an NTC check to a k-NTC check. Like NTC checks,
k-NTC checks are propagated to their callers. Functions designed not to
terminate can then be filtered out through the use of the appropriate filter in
the viewer.

Consider the following example, supposing that -know-NTC "SysHalt"
option has been applied at launch time.

1
2 /* external get data function */
3 extern int get_data(int *ptr,void *data);
4 extern int printf (const char *, ...);
5
6 // known NTC function
7 void SysHalt(int value)
8 {

2-38



Colored Source Code for C

9 printf("Halt value %d",value);
10 while (1) ; // NTL ERROR: Loop Never Terminate
11 }
12
13 #define OK 1
14 int main(void)
15 {
16 int data, *ptr = NULL;
17 int status = OK;
18
19 // get next store
20 status = get_data(ptr,(void *)&data);
21 if (status != OK)
22 SysHalt(status); // k-NTC check: Call never
terminate
23
24 return(0);
25 }

In the example, the relevant NTC check is converted to a k-NTC one.

Non Termination of Loop: NTL
This is a check to establish whether a loop (for, do-while or while) terminates.
Consider the following example:

1
2 // Function prototypes
3 void send_data(double data);
4 void update_alpha(double *a);
5
6 void main(void)
7 {
8 volatile double _acq;
9 double acq, filtered_acq, alpha;
10
11 // Init
12 filtered_acq = 0.0;
13 alpha = 0.85;
14
15 while (1) { //NTL ERROR: Non Termination Loop

2-39



2 Check Descriptions

16 // Acquisition
17 acq = _acq;
18 // Treatment
19 filtered_acq = acq + (1.0 - alpha) * filtered_acq;
20 // Action
21 send_data(filtered_acq);
22 update_alpha(&alpha);
23 }
24 }

In the example, the continuation condition is always true and the loop will
never exit. PolySpace verification will raise an error in trivial examples such
as this, and in much more complex circumstances.

Consider this second verification. When an error is found inside a for,
do-while, or while loop, PolySpace will not continue to propagate it.

1
2 void main(void)
3 {
4 int i;
5 double twentyFloat[20];
6
7 for (i = 0; i <= 20; i++) {

// NTL ERROR: propagation of OBAI ERROR
8 twentyFloat[i] = 0.0; // OBAI Warning: 20 verification with i
in [0,19] and one ERROR with i = 20
9 }
10 }

At line 8 in this second example, the red OBAI related to the 21st execution
of the loop has yielded the orange check. The 20 first executions would be
no problem, so this orange warning represents a combination of red and
green checks.

Note An NTL check can only be red or uncolored, unless you use the
-context-sensitivity option. If you use the -context-sensitivity option, NTL
checks can also be orange.

2-40



Colored Source Code for C

Tooltips for NTL Checks. Tooltips provide range information in the viewer,
including the number of iterations for loops.

There are 2 possible situations:

• Loops that terminate – A tooltip gives the number of iterations of the
loop. For example, for (i=0; i<10; i++), a tooltip on the for keyword
says Number of iteration(s): 10.

• Non–terminating loops — The NTL check contains information about
the maximum number of iterations that can be done. This number is an
overset of the real number of iterations (which may be lower).

For example:

- Failure at a given iteration, for (i=0; i<10; i++) y = 2 /
(i - 5); — The NTL check on the for keyword says: Number of
iteration(s): 6

This means that the loop fails at the 6th iteration, which can help you
find the orange check that contains the failure.

- Infinite loop x = 0; while (x >= 0) y = 2; — The NTL check on
the for keyword says: Number of iteration(s): 0..?

This means that the loop has an unknown number of iterations (up to
an infinite number). It does not mean that the loop is an infinite loop,
but that it may be an infinite loop. You would also get 0..? on the loop
while (1) { if (random) break; }.

Arithmetic Expressions: NTC
This is a check to establish whether standard arithmetic functions are used
with valid arguments, as defined in the following:

• Argument of sqrt must be positive (ISO®/IEC 9899 section 7.5.5.2)

• Argument of tan must be different from pi/2 modulo pi (ISO/IEC 9899
section 7.5.2.7)

• Argument of log must be strictly positive (ISO/IEC 9899 section 7.5.4.4)

• Argument of acos and asin must be within [-1..1] (ISO/IEC 9899 sections
7.5.2.1 and 7.5.2.2)

2-41



2 Check Descriptions

• Argument of exp must be less than or equal to 709 (ISO/IEC 9899 section
7.5.4.1)

• Argument of atanh must be within ]-1..1[ (ISO/IEC 9899 section 7.12.5.3)

• Argument of acosh must be greater or equal to 1 (ISO/IEC 9899 section
7.12.5.1)

A domain error (such that errno returns EDOM) occurs if an input argument
is outside the domain over which the mathematical function is defined. A
range error occurs (such that errno returns ERANGE) if the result cannot be
represented as a double value. In the latter case, the function returns 0 if the
result is too small, or HUGE_VAL with the appropriate sign if it is too big.

Consider the following example

1
2 #include <math.h>
3 #include <assert.h>
4
5 extern int random_int(void);
6
7 int main(void)
8 {
9
10 volatile double dbl_random;
11 const double dbl_one = 1.0;
12 const double dbl_mone = -1.0;
13
14 double sp = dbl_random;
15 double p = dbl_random;
16 double sn = dbl_random;
17 double n = dbl_random;
18 double no_trig_val_neg = dbl_random;
19 double no_trig_val_pos = dbl_random;
20 double pun = dbl_random;
21 double res;
22
23 // assert is used here to redefine range values of variables
24 assert(sp > 0.0);
25 assert(p >= 0.0);

2-42



Colored Source Code for C

26 assert(sn < 0.0);
27 assert(n <= 0.0);
28 assert(pun < 1.0);
29 assert(no_trig_val_neg < -1.0); assert(no_trig_val_pos > 1.0);
30
31 if (random_int()) res = sqrt(sn); // NTC ERROR:
need argument positive
32 if (random_int()) res = asin(no_trig_val_neg); // NTC ERROR:
need argument in range [-1..1]
33 if (random_int()) res = asin(no_trig_val_pos); // NTC ERROR:
need argument in range [-1..1]
34 if (random_int()) res = acos(no_trig_val_pos); // NTC ERROR:
need argument in range [-1..1]
35 if (random_int()) res = acos(no_trig_val_neg); // NTC ERROR:
need argument in range [-1..1]
36 if (random_int()) res = tan(1.5707963267948966); // NTC ERROR:
need argument in range ]-pi/2..pi/2[
37 if (random_int()) res = log(n); // NTC ERROR:
need argument strictly positive
38 if (random_int()) res = exp(710); // NTC ERROR:
need argument less or equal to 709
39
40 // No information about asin or acos because of random value
41 if (random_int()) {
42 res = asin(dbl_random);
43 res = acos(dbl_random);
44 }
45
46 // hyperbolic functions are available in the float range
47 if (random_int()) {
48 res = cosh(710);
49 res = cosh(10.0);
50 assert (res < 1.0);
51 }
52 if (random_int()) res = sinh(710);
53 if (random_int()) {
54 res = tanh(1.0);
55 assert (res > -1.0 && res < 1.0);
56 }
57

2-43



2 Check Descriptions

58 // inverted hyperbolic functions
59 if (random_int()) res = acosh(pun); // NTC ERROR:
Need argument >= 1
60 else res = acosh(1.0);
61 if (random_int()) res = atanh(no_trig_val_neg); // NTC ERROR:
Need argument in ]-1..1[
62 if (random_int()) res = atanh(no_trig_val_pos); // NTC ERROR:
Need argument in ]-1..1[
63 if (random_int()) res = atanh(dbl_mone); // NTC ERROR:
Need argument in ]-1..1[
64 if (random_int()) res = atanh(dbl_one); // NTC ERROR:
Need argument in ]-1..1[
65
66 return 0;
67 }
68

sqrt, tan, asin, acos, exp and log errors are derived directly from the
mathematical definition of functions. PolySpace verification highlights any
definite problems by means of an NTC to show that this is where execution
would terminate. No NTC information is delivered when PolySpace cannot
determine the exact value of the argument, (for asin and acos at lines 42 and
43). No range restriction is currently made for hyperbolic functions.

Caution Due to a lack of precision in some areas, PolySpace verification is
not always able to indicate a red NTC check on mathematical functions even
where a problem exists. In the following example involving a sqrt function,
neither an orange nor a red check is shown on line16 even though the variable
val2 is negative.

By default it is important to consider each call to any mathematical functions
as though it had been highlighted by an orange check, and could therefore
lead to a runtime error.

1
2 #include <math.h>
3
4 extern int random_int(void);

2-44



Colored Source Code for C

5
6 int main(void)
7 {
8
9 double val1, val2;
10
11 int i;
12 val2 = 5.0;
13 for (i = 0 ; i < 10 ; i++) {
14 val2 = val2 - 1.0;
15 }
16 val1 = sqrt(val2); // No check on sqrt
17 return ((int)val1);
18 }
19

Unreachable Code: UNR
This is a check to establish whether different code snippets (assignments,
returns, conditional branches and function calls) are dead, such that they
can never be accessed during the normal execution of the software. Dead, or
Unreachable, code is represented by means of a gray coding on every check,
with supplementary UNR checks also being added.

Consider the following example.

1
2 #define True 1
3 #define False 0
4
5 typedef enum {
6 Intermediate, End, Wait, Init
7 } enumState;
8
9 // pure stub
10 int intermediate_state(int);
11 int random_int(void);
12
13 int State (enumState stateval)
14 {
15 volatile int random;

2-45



2 Check Descriptions

16 int i;
17 if (stateval == Init) return False;
18 return True;
19 }
20
21 int main (void)
22 {
23 int i, res_end;
24 enumState inter;
25
26 res_end = State(Init);
27 if (res_end == False) {
28 res_end = State(End);
29 inter = (enumState)intermediate_state(0);
30 if (res_end || inter == Wait) { // UNR code on inter
== Wait
31 inter = End;
32 }
33 // use of I not initialized
34 if (random_int()) {
35 inter = (enumState)intermediate_state(i); // NIV ERROR
36 if (inter == Intermediate) { // UNR code because
of NIV ERROR
37 inter = End;
38 }
39 }
40 } else {
41 i = 1; // UNR code
42 inter = (enumState)intermediate_state(i); // UNR code
43 }
44 return res_end;
45 }
46

The example illustrates three possible reasons why code might be
unreachable, and hence be colored gray:

• At line 30 the first part of a two part test is always true. The other part is
never evaluated, following the standard definition of logical operator "||".

2-46



Colored Source Code for C

• The piece of code after a red error is never evaluated by PolySpace software.
The call to the function on line 35 and the line following it are considered
to be dead code. Correcting the red error and relaunching would allow
the color to be revised.

• At line 27, the test is always true (if-{ part), and the first branch is always
executed. Consequently there is dead code in the other branch (i.e. in the
else part at lines 41 to 42).

Inspection Points
You can create inspection points in the code that provide range information.

For example:

#pragma Inspection_Point <var1> <var2>

where var1 and var2 are scalar variables, instructs the PolySpace verification
to provide range information for var1 and var2 at that point in the code.
You see this information in a tooltip message when you place your cursor
over var1 or var2.

2-47



2 Check Descriptions

2-48



3

Approximations Used
During Verification

• “Why PolySpace Verification Uses Approximations” on page 3-2

• “Approximations Made by PolySpace Verification” on page 3-4



3 Approximations Used During Verification

Why PolySpace Verification Uses Approximations

In this section...

“What is Static Verification” on page 3-2

“Exhaustiveness” on page 3-3

What is Static Verification
PolySpace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program
without actually executing it. This differs significantly from other techniques,
such as runtime debugging, in that the verification it provides is not based on
a given test case or set of test cases. The dynamic properties obtained in the
PolySpace verification are true for all executions of the software.

PolySpace verification works by approximating the software under
verification, using safe and representative approximations of software
operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable ’i’ never overflows the range of ’tab’ a traditional
approach would be to enumerate each possible value of ’i’. One thousand
checks would be needed.

Using the static verification approach, the variable ’i’ is modelled by its
variation domain. For instance the model of ’i’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,
the information that ’i’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of ’i’ is smaller than the range of ’tab’. Only one check is required

3-2



Why PolySpace® Verification Uses Approximations

to establish that – and hence the gain in efficiency compared to traditional
approaches.

Static code verification does have an exact solution, but that solution is
generally not practical, as it would generally require the enumeration of all
possible test cases. As a result, approximation is required.

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
verification works by performing upper approximations. In other words, the
computed variation domain of any program variable is always a superset of
its actual variation domain. The direct consequence is that no runtime error
(RTE) item to be checked can be missed by PolySpace verification.

3-3



3 Approximations Used During Verification

Approximations Made by PolySpace Verification

In this section...

“Volatile Variables” on page 3-4

“Structures with Volatile Fields” on page 3-4

“Absolute Addresses” on page 3-5

“Pointer Comparison” on page 3-5

“Shared Variables” on page 3-5

“Trigonometric Functions” on page 3-6

“Unions” on page 3-6

“Constant Pointer” on page 3-7

Volatile Variables
Volatile variables are potentially uninitialized and their content is always
full range.

2 int volatile_test (void)
3 {
4 volatile int tmp;
5 return(tmp); // NIV orange: the variable content is full range
[-2^31;2^31-1]
6 }

In the case of a global variable the content would also be full range, but the
NIV check would be green.

Structures with Volatile Fields
In this example, although only the b field is declared as volatile, in practice
any read access to the “a” field will be full range and orange.

2 typedef struct {
3 int a;
4 volatile int b;
5 } Vol_Struct;

3-4



Approximations Made by PolySpace® Verification

Absolute Addresses
Both reading from, and writing to, an absolute address leads to warning
checks on the pointer dereference. An absolute address is considered as a
volatile variable.

Val = *((char *) 0x0F00); // NIV and IDP orange: access to an
absolute address

Pointer Comparison
PolySpace verification is a static tool verifying source code. Memory
management concerns dynamic considerations, and the characteristics of
particular compilers and targets. PolySpace verification therefore doesn’t
consider where objects are actually implanted in memory

5 int *i, *j, k;
6 i = (int *) 0x0F00;
7 j = (int *) 0x0FF0;
8
9 if ( i < j) // the condition can be true or false
10 k = 12; // this line is reachable
11 else
12 k = 23; // this line is reachable too.

Its the same situation if “i” and “j” points to real variable

6 i = & one_variable;
7 j = & another_one;
9 if ( i < j) // the condition can still be true or false

Shared Variables
At the minimum, a shared variable contains a union of all ranges it can
contain among the application. At the maximum, the variable will be full
range.

12 void p_task1(void)
13 {
14 begin_cs();
15 X = 0;
16 if (X) {
17 Y = X; // Verified NIV, although it should be gray

3-5



3 Approximations Used During Verification

18 assert (Y == 12); // Warning assert, although it should be gray
19 }
20 end_cs();
21 }
22
23 void p_task2(void)
24 {
25 begin_cs();
26 X = 12;
27 Y = X + 1; // PolySpace considers [Y==1] or [Y==13]
28 if (Y == 13)
29 Y = 14;
30 else
31 Y = X - 1 ; // this line should be gray
32 end_cs();
33 }

Trigonometric Functions
With trigonometric functions, such as sines and cosines, verification
sometimes assumes that the return value is bound between the limits of that
function, regardless of the parameter passed to it. Consider the following
example, which uses acos, sin and asin functions.

7 double res;
8
9 res = sin(3.141592654);
10 assert(res == 0.0); // Range is [-1..1]
11
12 res = acos(0.0);
13 assert(res == 0.0); // Range always in [0..pi]
14
15 res = asin(0.0);
16 assert(res == 0.0); // Always gives [0.0]

Unions
In some situations, unions can help you construct efficient code. However,
unions can cause issues for code verification, for example:

• Padding – Padding might be inserted at the end of an union.

3-6



Approximations Made by PolySpace® Verification

• Alignment – Members of structures within a union might have different
alignments.

• Endianness – Whether the most significant byte of a word could be stored
at the lowest or highest memory address.

• Bit-order – Bits within bytes could have both different numbering and
allocation to bit fields.

These issues can cause PolySpace verification to lose precision when structure
unions are considered. In fact, these kinds of implementation are compiler
dependant. Conversions from one type a union to another will cause a loss
of precision on two checks:

• Is the other field initialized? Orange NIV

• What is the content of the other field? Full range

typedef union _u {
int a;
char b[4]; } my_union;
my_union X;

X.b[0] = 1; X.b[1] = 1; X.b[2] = 1; X.b[1] = 1;
if (X.A == 0x1111)
else // both branches are reachable

Constant Pointer
To increase PolySpace precision where pointers are analyzed, replace

const int *p = &y;

with:

#define p (&y)

3-7



3 Approximations Used During Verification

3-8



4

Examples



4 Examples

Complete Examples

In this section...

“Simple C Example” on page 4-2

“Apache Example” on page 4-2

“cxref Example” on page 4-3

“T31 Example” on page 4-3

“Dishwasher1 Example” on page 4-3

“Satellite Example” on page 4-4

Simple C Example
polyspace-c \
-prog myCproject \
-O1 \
-I /home/user/includes \
-D SUN4 -D USE_FILES \

Apache Example
Here is a script for verifying the code for Apache (after proper formatting).
The source code is in C and the compilation is for a Sun™.

Note The use of O0 to reduce verification time.

polyspace-c \ \
-target sparc \
-prog Apache \
-keep-all-files \
-allow-undef-variables \
-continue-with-red-error \
-O0 \
-D PST \
-D __GNUC_MINOR__=6 -D SOLARIS2=270 -D USE_EXPAT \
-D NO_DL_NEEDED \

4-2



Complete Examples

-I sources \
-I /usr/local/pst/include.sparc \
-I /usr/include \
-results-dir RESULTS

cxref Example
Here is another C launch command. The compilation is for Linux. Note the
escape characters, allowing quoted strings to be used as compiler defines.

polyspace-c \
-OS-target linux \
-prog cxref \
-O0 \
-I `pwd` \
-I sources \
-I <<PolySpace_Verifer_InstallPath>>/include/include.linux \
-D CXREF_CPP='\"/usr/local/gcc/bin/cpp\"' \
-D PAGE='\"A4\"' \
-results-dir RESULTS

T31 Example
Another simple C launcher. There are a couple of tasks and compilation is
for an m68k.

polyspace-c \
-target m68k \
-entry-points task_callback_main,task_tcp_main,cdtask_depm_main,

task_receiver \
-to pass1 \
-prog T31 \
-O0 \
-results-dir `pwd`/RESULTS_31 \
-keep-all-files

Dishwasher1 Example
Another C example. This one is for the c-167 and has tasks protected by
critical section.

polyspace-c \
-target c-167 \

4-3



4 Examples

-entry-points periodic,pst_main \
-D PST -D const= -D water= \
-from scratch \
-to pass4 \
-critical-section-begin "critical_enter:cs1" \
-critical-section-end "critical_exit:cs1" \
-prog dishwasher1 \
-I `pwd`/sources \
-O0 \
-keep-all-files \
-results-dir RESULTS

Satellite Example
A C example with tasks and critical sections.

polyspace-c
-target c-167 \
-entry-points ctask0,ctask1,ctask2,ctask3,interrupts \
-O2 \
-keep-all-files \
-from scratch \
-critical-section-begin "DisableInterrupts:sc1" \
-critical-section-end "EnableInterrupts:sc1" \
-ignore-constant-overflows \
-include `pwd`/sources/options.h \
-to pass4 \
-prog satellite \
-I `pwd`/sources \
-results-dir RESULTS

4-4


	toc
	Option Descriptions
	General Options
	Overview
	-prog Session identifier
	-date Date
	-author Author
	-verif-version Version
	-keep-all-files
	-continue-with-red-error (Deprecated)
	-continue-with-existing-host
	-allow-unsupported-linux
	Report Generation
	-report-template Report_Template_Name
	-report-output-format Output_Format
	-report-output-name Name

	-results-dir Results Directory
	-sources "files" or -sources-list-file file_name
	-I directory

	Target/Compiler Options
	Overview
	-target TargetProcessorType
	GENERIC ADVANCED TARGET OPTIONS
	-little-endian
	-big-endian
	-default-sign-of-char [signed|unsigned]
	-char-is-16bits
	-short-is-8bits
	-int-is-32bits
	-long-long-is-64bits
	-double-is-64bits
	-pointer-is-32bits
	-align [8|16|32]
	-logical-signed-right-shift

	-OS-target OperatingSystemTargetForPolySpaceStubs
	-D compiler-flag
	-U compiler-flag
	-include file_name
	-post-preprocessing-command <file_name> or "command"
	-post-analysis-command <file_name> or "command"

	Compliance with Standards Options
	-dos
	Embedded Assembler
	-discard-asm
	Pragmas asm

	Strictness during verification launching
	-strict
	-wall

	Permissiveness during verification launching
	-permissive
	-permissive-link
	-allow-non-int-bitfield
	-allow-undef-variables
	-ignore-constant-overflows
	-allow-unnamed-fields
	-allow-negative-operand-in-shift

	MISRA-C 2004 Rules
	 -misra2 [all-rules | file_name]
	-includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]

	-dialect [iar|keil]
	-sfr-types

	PolySpace Inner Settings Options
	-unit-by-unit
	-unit-by-unit-common-source filename
	MAIN GENERATOR OPTIONS (-main-generator) for PolySpace Software
	PolySpace Client for C/C++ default behavior
	PolySpace Server for C/C++ default behavior
	-main-generator (detailed options)
	-main-generator-writes-variables [ none | public | all | custom=
	-function-called-before-main function_name
	-main-generator-calls [ none | unused | all | custom=f1,f2,...]

	Stubbing
	-data-range-specifications file_name
	-permissive-stubber
	-no-automatic-stubbing

	Assumptions
	-div-round-down
	-no-def-init-glob
	-size-in-bytes
	-allow-ptr-arith-on-struct
	-ignore-float-rounding
	-detect-unsigned-overflows
	Example 1
	Example 2
	-known-NTC proc1[,proc2[,...]]

	Automatic Orange Tester
	-prepare-automatic-tests

	-machine-architecture
	-max-processes
	Others
	-extra-flags option-extra-flag
	-c-extra-flags flag
	-il-extra-flags flag


	Precision/Scaling Options
	-quick (Deprecated)
	Benefits
	Limitations

	-O(0-3)
	-modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]
	-from verification-phase
	-to verification-phase
	-context-sensitivity "proc1[,proc2[,...]]"
	-context-sensitivity-auto
	-path-sensitivity-delta number
	-retype-pointer
	-retype-int-pointer
	-k-limiting number
	-no-fold
	-respect-types-in-globals
	-respect-types-in-fields
	-inline "proc1[,proc2[,...]]"
	-lightweight-thread-model
	-less-range-information

	Multitasking Options ( PolySpace Server for C/C++ Product Only)
	-entry-points str1[,str2[,...]]
	-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
	-temporal-exclusions-file file_name

	Batch Options
	-server server_name_or_ip[:port_number]
	-sources-list-file file_name
	-v | -version
	-h[elp]


	Check Descriptions
	Colored Source Code for C
	Illegal Pointer Access to Variable or Structure Field: IDP
	Array Conversion Must Not Extend Range: COR
	Array Index Within Bounds: OBAI
	Initialized Return Value: IRV
	Non-Initialized Variables: NIV/NIVL
	Non-Initialized Pointer: NIP
	POW (Deprecated)
	User Assertion: ASRT
	Scalar and Float Underflows: UNFL
	Float Underflow Versus Values Near Zero: UNFL

	Scalar and Float Overflows: OVFL
	How Much is the Biggest Float in C?
	What is the Type of Constants/What is a Constant Overflow?
	Left shift overflow on signed variables: OVFL

	Float Underflows and Overflows: UOVFL (Deprecated)
	Scalar or Float Division by Zero: ZDV
	Shift Amount in 0..31 (0..63):SHF
	Left Operand of Left Shift is Negative: SHF
	Function Pointer Must Point to a Valid Function: COR
	Wrong Type for Argument: COR
	Wrong Number of Arguments: COR
	Wrong Return Type of a Function Pointer: COR
	Wrong Return Type for Arithmetic Functions: COR
	Results without <math.h>:
	Results with <math.h>:
	Pointer Within Bounds: IDP
	Understanding Addressing
	Understanding Pointers

	Non Termination of Call or Loop
	Non Termination of a Call: NTC
	Known Non-Termination of a Call: k-NTC
	Non Termination of Loop: NTL
	Arithmetic Expressions: NTC

	Unreachable Code: UNR
	Inspection Points


	Approximations Used During Verification
	Why PolySpace Verification Uses Approximations
	What is Static Verification
	Exhaustiveness

	Approximations Made by PolySpace Verification
	Volatile Variables
	Structures with Volatile Fields
	Absolute Addresses
	Pointer Comparison
	Shared Variables
	Trigonometric Functions
	Unions
	Constant Pointer


	Examples
	Complete Examples
	Simple C Example
	Apache Example
	cxref Example
	T31 Example
	Dishwasher1 Example
	Satellite Example




